



## Photosynthetic traits of the endangered plant species *Torreya jackii*

WANG Qiang<sup>1</sup>, JIN Zexin<sup>1,\*</sup>, GUO Shuiliang<sup>2</sup>, GUAN Ming<sup>1</sup>, WANG Xinglong<sup>1</sup>

1 Institute of Ecology, Taizhou University, Linhai 317000, China

2 School of Life and Environment Science, Shanghai Normal University, Shanghai 200030, China

**Abstract:** A portable Li-6400 XT photosynthesis measuring system (LI-COR Biosciences, Lincoln, NE, USA) was used to explore how *Torreya jackii*, an endangered species endemic to China, adapts to the environment and to illustrate and determine various photosynthetic characteristics of *T. jackii* in three natural habitats with different light conditions, specifically gap, edge and understory habitats. Also, the physiological mechanisms that have resulted in the endangered status of this species were explored to provide baseline reference data in support of

off-site conservation and population rejuvenation of *T. jackii*. The results for *T. jackii* growing in forest gap and edge habitats show that when the diurnal variation in the photosynthetic rates in the summer is graphed, typical







1.3





concentration of Torreya jacki under different habitats

w

(P<0.05) A B C D

4

Seasons Parameters Habitats Winter Spring Summer Autumn  $(P_n)$ Gap 2.72w0.231Aa 4.03w 0.272Ba 4.76w 0.103Ca 1.77w0.147Da Daily mean values of Edge 2.08w 0.170Ab 3.81w0.181Bb 3.79w 0.153Bb 1.58w 0.084Cb net photosynthetic rate Understory 1.45w 0.268Ac 3.31w0.277Bc 2.28w 0.215Cc 1.05w0.118Dc  $/(\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1})$  $(G_{\rm s})$ Gap 0.06±0.001Aa 0.18±0.001Ba 0.08±0.001Ca 0.03±0.001Da Daily mean values of 0.04±0.003Ab  $0.12 \pm 0.004 Bb$ 0.07±0.002Ca 0.03±0.001Da Edge stomatal conductance Understory 0.04±0.001Ab 0.08±0.002Bc  $0.04 \pm 0.001 Ab$ 0.02±0.001Cb  $/(mol \cdot m^{-2} \cdot s^{-1})$  $CO_2$  $(C_i)$ Gap 132.76±4.077Aa 260.82±1.842Ba 238.69±1.802Ca 245.91±6.852Da Daily mean values Edge 219.74±2.746Ab 279.90±2.735Bb 245.01±1.279Cb 263.07±3.163Db of intercellular CO<sub>2</sub> Understory 259.45±1.323Ac 264.48±2.781Bc 289.46±4.493Cc 276.01±4.211Dc concentration  $/(\text{mol}\cdot\text{mol}^{-1})$ W (P<0.05) (P<0.05) 2.3 2 3  $(P_{nmax})$ (LSP) (AQY) P<sub>nmax</sub> AQY 4 LSP 4  $P_{\rm nmax}$ LSP P<sub>nmax</sub> > LSP AQY AQY > >3 (LCP) LCP LCP > LCP > >  $(R_{\rm d})$ >  $R_{\rm d}$ > >  $R_{\rm d}$ 

 Table 1
 Seasonal change in daily mean values of net photosynthetic rate
 intercellular CO<sub>2</sub> concentration

 stomatal conductance of *Torreya jackii* leaves under different habitats

 $CO_2$ 

1

| 3              | 1 |   |   | $(V_{\rm cmax})$  | $(J_{\rm max})$ | (TPU) |
|----------------|---|---|---|-------------------|-----------------|-------|
|                | > | > | > | V <sub>cmax</sub> |                 |       |
| $J_{\rm max}4$ |   |   |   | TPU               |                 |       |



> >

2

| electron transport<br>mol $\cdot m^{-2} \cdot s^{-1}$ )                                                                                                  |                                                                                                                       |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                            |                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (TPU)<br>Triose phosphate<br>utilization rate<br>/( mol·m <sup>-2</sup> ·s <sup>-1</sup> )                                                               | Gap<br>Edge<br>Understory                                                                                             | 8.978±0.366Aa<br>5.285±0.215Ab<br>4.996±0.204Ab                                                                                                                                                                                                                | 22.931±0.936E<br>16.025±0.654E<br>12.394±0.506E                                                                                                                                                                                                                       | 3a       9.478±0.387         3b       8.826±0.360         3c       6.097±0.249                                                                                                                             | Aa 4.116±0.168Ca<br>Cb 3.965±0.171Da<br>Cc 2.273±0.093Db                                                                                                                                                       |
| w<br>(P<0.05)<br><b>2.4</b>                                                                                                                              |                                                                                                                       |                                                                                                                                                                                                                                                                | ( <i>P</i> <0.05)                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                                |
| [16]                                                                                                                                                     | 3 3<br>b                                                                                                              |                                                                                                                                                                                                                                                                | a b                                                                                                                                                                                                                                                                   | a+b<br>3                                                                                                                                                                                                   |                                                                                                                                                                                                                |
| a b                                                                                                                                                      | a+b                                                                                                                   |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                       | b                                                                                                                                                                                                          |                                                                                                                                                                                                                |
| Table 3                                                                                                                                                  | 3<br>Seasonal change in                                                                                               | 3<br>the chlorophyll cor                                                                                                                                                                                                                                       | ntent of <i>Torreya jack</i>                                                                                                                                                                                                                                          | <i>ii</i> leaves under diff                                                                                                                                                                                | erent habitats                                                                                                                                                                                                 |
| Table 3                                                                                                                                                  | 3<br>Seasonal change in<br>Habitats                                                                                   | ;<br>the chlorophyll cor                                                                                                                                                                                                                                       | ntent of <i>Torreya jack</i><br>Seas                                                                                                                                                                                                                                  | <i>ii</i> leaves under diff<br>sons                                                                                                                                                                        | ferent habitats                                                                                                                                                                                                |
| Table 3     Parameters                                                                                                                                   | 3<br>Seasonal change in<br>Habitats<br>Gap                                                                            | s<br>the chlorophyll cor<br>Spring<br>2.82w 0.125Aa                                                                                                                                                                                                            | ntent of <i>Torreya jack</i><br>Seas<br>Summer<br>3.17w 0.220Aa                                                                                                                                                                                                       | <i>ii</i> leaves under diff<br>sons<br>Autumn<br>3.01w 0.338Aa                                                                                                                                             | Ferent habitats Winter 2.53w 0.057Ba                                                                                                                                                                           |
| Table 3         Parameters         a         Chlorophyll a         /(mg·g <sup>-1</sup> )                                                                | 3<br>Seasonal change in<br>Habitats<br>Gap<br>Edge                                                                    | s<br>the chlorophyll cor<br>Spring<br>2.82w 0.125Aa<br>2.97w 0.233Aab                                                                                                                                                                                          | ntent of <i>Torreya jack</i><br>Seas<br>Summer<br>3.17w0.220Aa<br>3.42w0.117Aa                                                                                                                                                                                        | <i>ii</i> leaves under diff<br>sons<br>Autumn<br>3.01w 0.338Aa<br>3.15w 0.278Aab                                                                                                                           | Winter<br>2.53w 0.057Ba<br>2.32w 0.150Bab                                                                                                                                                                      |
| Table 3         Parameters         a         Chlorophyll a         /(mg·g <sup>-1</sup> )                                                                | 3<br>Seasonal change in<br>Habitats<br>Gap<br>Edge<br>Understory                                                      | s<br>the chlorophyll cor<br>Spring<br>2.82w 0.125Aa<br>2.97w 0.233Aab<br>3.32w 0.172Ab                                                                                                                                                                         | ntent of <i>Torreya jack</i><br>Seas<br>Summer<br>3.17w 0.220Aa<br>3.42w 0.117Aa<br>3.83w 0.136Bb                                                                                                                                                                     | <i>ii</i> leaves under diff<br>sons<br>Autumn<br>3.01w 0.338Aa<br>3.15w 0.278Aab<br>3.44w 0.486Ab                                                                                                          | Winter           2.53w 0.057Ba           2.32w 0.150Bab           2.05w 0.228Cb                                                                                                                                |
| Table 3         Parameters         a         Chlorophyll a         /(mg·g <sup>-1</sup> )         b                                                      | 3<br>Seasonal change in<br>Habitats<br>Gap<br>Edge<br>Understory<br>Gap                                               | 5<br>the chlorophyll cor<br>Spring<br>2.82w 0.125Aa<br>2.97w 0.233Aab<br>3.32w 0.172Ab<br>0.89w 0.011Aa                                                                                                                                                        | Seas           Summer           3.17w 0.220Aa           3.42w 0.117Aa           3.83w 0.136Bb           1.18w 0.127Aa                                                                                                                                                 | <i>ii</i> leaves under diff<br>sons<br>Autumn<br>3.01w 0.338Aa<br>3.15w 0.278Aab<br>3.44w 0.486Ab<br>1.04w 0.221Aa                                                                                         | Winter           2.53w 0.057Ba           2.32w 0.150Bab           2.05w 0.228Cb           0.87w 0.013Aa                                                                                                        |
| Table 3         Parameters         a         Chlorophyll a         /(mg·g <sup>-1</sup> )         b         Chlorophyll b         /(mg·g <sup>-1</sup> ) | 3<br>Seasonal change in<br>Habitats<br>Gap<br>Edge<br>Understory<br>Gap<br>Edge                                       | sthe chlorophyll cor           Spring           2.82w 0.125Aa           2.97w 0.233Aab           3.32w 0.172Ab           0.89w 0.011Aa           1.09w 0.146Ab                                                                                                 | Seas           Summer           3.17w 0.220Aa           3.42w 0.117Aa           3.83w 0.136Bb           1.18w 0.127Aa           1.21w 0.075Ba                                                                                                                         | <i>ii</i> leaves under diff<br>sons<br>Autumn<br>3.01w 0.338Aa<br>3.15w 0.278Aab<br>3.44w 0.486Ab<br>1.04w 0.221Aa<br>1.13w 0.050ABa                                                                       | Winter           2.53w 0.057Ba           2.32w 0.150Bab           2.05w 0.228Cb           0.87w 0.013Aa           0.77w 0.072Cab                                                                               |
| Table 3         Parameters         a         Chlorophyll a         /(mg·g <sup>-1</sup> )         b         Chlorophyll b         /(mg·g <sup>-1</sup> ) | Seasonal change in<br>Habitats<br>Gap<br>Edge<br>Understory<br>Gap<br>Edge<br>Edge<br>Understory                      | the chlorophyll cor           Spring           2.82w 0.125Aa           2.97w 0.233Aab           3.32w 0.172Ab           0.89w 0.011Aa           1.09w 0.146Ab           1.15w 0.013Ab                                                                          | Seas           Summer           3.17w 0.220Aa           3.42w 0.117Aa           3.83w 0.136Bb           1.18w 0.127Aa           1.21w 0.075Ba           1.46w 0.181Aa                                                                                                 | <i>ii</i> leaves under diff<br>sons<br>Autumn<br>3.01w 0.338Aa<br>3.15w 0.278Aab<br>3.44w 0.486Ab<br>1.04w 0.221Aa<br>1.13w 0.050ABa<br>1.33w 0.101Aa                                                      | Winter           2.53w 0.057Ba           2.32w 0.150Bab           2.05w 0.228Cb           0.87w 0.013Aa           0.77w 0.072Cab           0.53w 0.031Bb                                                       |
| Table 3         Parameters         a         Chlorophyll a         /(mg·g <sup>-1</sup> )         b         Chlorophyll b         /(mg·g <sup>-1</sup> ) | Seasonal change in<br>Habitats<br>Gap<br>Edge<br>Understory<br>Gap<br>Edge<br>Understory<br>Gap                       | sthe chlorophyll cor           Spring           2.82w 0.125Aa           2.97w 0.233Aab           3.32w 0.172Ab           0.89w 0.011Aa           1.09w 0.146Ab           1.15w 0.013Ab           3.71w 0.136Aa                                                 | Seas           Summer           3.17w 0.220Aa           3.17w 0.220Aa           3.42w 0.117Aa           3.83w 0.136Bb           1.18w 0.127Aa           1.21w 0.075Ba           1.46w 0.181Aa           4.35w 0.347Aa                                                 | <i>ii</i> leaves under diff<br>sons<br>Autumn<br>3.01w 0.338Aa<br>3.15w 0.278Aab<br>3.44w 0.486Ab<br>1.04w 0.221Aa<br>1.13w 0.050ABa<br>1.33w 0.101Aa<br>4.05w 0.559Aa                                     | Winter         2.53w 0.057Ba         2.32w 0.150Bab         2.05w 0.228Cb         0.87w 0.013Aa         0.77w 0.072Cab         0.53w 0.031Bb         3.40w 0.070Ba                                             |
| Table 3ParametersaChlorophyll a $/(mg \cdot g^{-1})$ bChlorophyll b $/(mg \cdot g^{-1})$ a+bChlorophyll a+b $/(mg \cdot g^{-1})$                         | Seasonal change in<br>Habitats<br>Gap<br>Edge<br>Understory<br>Gap<br>Edge<br>Understory<br>Gap<br>Edge<br>Understory | the chlorophyll cor           Spring           2.82w 0.125Aa           2.97w 0.233Aab           3.32w 0.172Ab           0.89w 0.011Aa           1.09w 0.146Ab           1.15w 0.013Ab           3.71w 0.136Aa           4.06w 0.379Aab           4.47w 0.185Ab | Seas           Summer           3.17w 0.220Aa           3.17w 0.220Aa           3.42w 0.117Aa           3.83w 0.136Bb           1.18w 0.127Aa           1.21w 0.075Ba           1.46w 0.181Aa           4.35w 0.347Aa           4.63w 0.192Ba           5.29w 0.317Bb | <i>ii</i> leaves under diff<br>sons<br>Autumn<br>3.01w 0.338Aa<br>3.15w 0.278Aab<br>3.44w 0.486Ab<br>1.04w 0.221Aa<br>1.13w 0.050ABa<br>1.33w 0.101Aa<br>4.05w 0.559Aa<br>4.28w 0.328Bab<br>4.77w 0.587ABb | Winter         2.53w 0.057Ba         2.32w 0.150Bab         2.05w 0.228Cb         0.87w 0.013Aa         0.77w 0.072Cab         0.53w 0.031Bb         3.40w 0.070Ba         3.09w 0.222Ca         2.58w 0.259Cb |



Fig. 2 Seasonal change in daily precess of net photosynthetic rate of *Torreya jacki* and its accompanying species under different habitats





 $P_{n}$ 

## Table 5 Seasonal change in Light saturation point and Light compensation point of Torreya jackii leaves and its accompanying species under different habitats

|                           |         |                |                         | Species                   |               |                |
|---------------------------|---------|----------------|-------------------------|---------------------------|---------------|----------------|
| Parameters                | Seasons | Torreya jackii | Machilus<br>leptophylla | Cyclobalanopsis<br>glauca | Quercus fabri | Rhus chinensis |
| (LSP)<br>Light saturation | Spring  | 462±16.819Aa   | 628±25.637Ba            | 752±24.494Ca              | 564±23.025Da  | 530±22.861Da   |
| point                     | Summer  | 927±34.456Ab   | 940±38.375Bb            | 1288±49.499Cb             | 1206±48.826Cb | 1108±45.233Db  |



|                |         | RuBP | $CO_2$ | Rubisco |                   |                       |             |     |                   |
|----------------|---------|------|--------|---------|-------------------|-----------------------|-------------|-----|-------------------|
|                |         | NADP | H      |         | RuBP              |                       |             |     |                   |
|                |         |      |        |         |                   |                       |             |     |                   |
| 3              |         |      |        |         |                   | ]                     | LSP         | AQY | V <sub>cmax</sub> |
| $J_{\rm max}$  | TPU     |      |        |         |                   | $P_{nmax}$            |             |     |                   |
|                |         |      |        |         |                   |                       | $P_{\rm n}$ |     |                   |
|                | $P_{n}$ |      |        |         |                   |                       |             |     |                   |
|                |         |      |        |         |                   |                       |             |     |                   |
|                |         |      |        | PAR     |                   |                       |             |     |                   |
|                | PAR     |      | 17%    | 4       |                   | LSP V <sub>cmax</sub> | $J_{\max}$  | TPU |                   |
|                |         |      |        |         |                   |                       |             |     |                   |
|                |         |      |        |         |                   |                       |             |     |                   |
| $P_{n}$        |         |      |        |         |                   | (Cathaya argyrophy    | ylla)       | PA  | R                 |
| P <sub>n</sub> |         | [21] | 2      | 1       | P <sub>nmax</sub> |                       |             |     |                   |
|                |         |      |        |         |                   | LCP                   |             |     |                   |
|                |         | AQY  |        |         |                   | R <sub>d</sub>        |             |     |                   |



## **Reference:**

- [1] Wang C T. Present situation of wild *Torreya jackii* resource and its protecting measure in Zhejiang province. Journal of Anhui Agriculture Science, 2005, 33(3): 432-432, 450.
- [2] Wang C T. The biological characteristics of wild *Torreya jackii* and protection research. Practical forestry technology, 2005, (10): 6-7.
- [3] Mistry of environmental protection, Institute of botany, The Chinese academy of sciences. China rare and endangered plants list: volume 1. Beijing: Science Press, 1987.
- [4] Li J M, Jin Z X. Genetic variation and differentiation in *Torreya jackii* Chun an endangered plant endemic to China. Plant Science, 2007, 172: 1048–1053.
- [5] Li J H, Jin Z X, Li J M. Genetic diversity of endangered plant *Torreya jackii*: A study with RAPD markers. Chinese Journal of Applied Ecology, 2007, 18(12): 2661-2667.
- [6] Scholes J D, Press M C, Zipperlen S W. Differences in light energy utilization and dissipation between

dipteroearp rain forest tree seedlings. Oecologia, 1997, 109(1): 41-48.

- [7] Senevirathna A M W K, Stirling C M, Rodrigo V H L. Growth, photosynthetic performance and shade adaptation of rubber (*Hevea brasiliensis*) grown in natural shade. Tree Physiology, 2003, 23(10): 705-712.
- [8] Jin Z X, Li J M, Ma J E. Photosynthesis traits of the endangered plant species *Sinocalycanthus chinensis*. Journal of Zhejiang University(Science Edition), 2011, 38(6): 682-688.
- [9] Jin Z X, Ke S X. The photosynthetic characteristics of the main species of the *Heptacodium miconioides* community in Tiantai Mountain of Zhejiang Province, China. Acta Ecologica Sinica, 2002, 22(10): 1645-1652.
- [10] Zhu T J, Yue C L, Jin S H. Ecophysiological trait comparison of *Shaniodendron subaequale* and accompanying species. Journal of Zhejiang Forestry College, 2008, 25(2): 176-180.
- [11] Shi S L, Wang Y C, Zhou H B, Zhou J H. Comparative analysis of water related parameters and photosynthetic characteristics in the endangered plant *Tetraena mongolica* Maxim. and the closely related *Zygophyllum xanthoxylon* (Bunge) Maxim. Acta Ecologica Sinica, 2012, 32(4):1163-1173.
- [12] Xiong Z C, Luo W H, Wang M L, Wang D R, Wen X Y. Comparative study on photosynthetic characteristics of *Camellia nitidissima* and its accompanying species. Guangxi Science, 2012, 19(2): 201-204.
- [13] Guo X R, Cao K F, Xu Z F. Response of photosynthesis and antioxygenic enzymes in seedlings of three tropical forest tree species to different light environments. Chinese Journal of Applied Ecology, 2004, 15(3):377-381.
- [14] Zhu H, Ma R J. Photosynthetic characteristics comparison between an invasive plant, *Lantana camara* and associated species. Acta Ecologica Sinica, 2009, 29(5): 2701-2709.
- [15] Long S P, Bernacchi C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 2003, 392(54): 2393-2401.
- [16] He W M, Dong M. Growth and physiological features of *Salix matsudana* on the Mu Us Sandland in response to shading. Chinese Journal of Applied Ecology, 2003, 14(2): 175–178.
- [17] Farquhar S P, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345.
- [18] Farquhar G D, Caemmerer S, Berry J A. A biochemical model of photosynthetic CO<sub>2</sub> assimilation in leaves of C<sub>3</sub> species. Planta, 1980, 149(1): 78-90.
- [19] Hartman F C, Harpel M R. Structure, function, regulation, and assembly of ribulose-1,5-Bisphosphate carboxylase/oxygenase. Annual Review of Biochemistry, 1994, 63: 197-234.
- [20] Harley P C, Thomas R B, Reynolds J F, Strain B R. Modelling photosynthesis of cotton grown in elevated CO<sub>2</sub>. Plant Cell Environment, 1992, 15(3): 271-282.
- [21] Zhang W F, Fan D Y, Xie Z Q, Jiang X H. The seasonal photosynthetic responses of seedlings of the endangered plant *Cathaya argyrophylla* to different growth light environments. Biodiversity Science, 2005, 13(5): 387-397.
- [22] Strauss-Debenedetti S, Bazzaz F A. Plasticity and acclimation to light in tropical Moraceae of different succession positions. Oecologia, 1991, 87, 377-387.
- [23] Wang R. The response and acclimation of two different plant functional groups to different light habitats in subtropical evergreen broad-leaved forest. Beijing: Chinese Academy of Forestry, 2007.
- [24] Reich P B, Walters M B, Tjoelker M G, Vanderklein D, Buschena C. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 1998, 12, 395-405.
- [25] Lovelock C E, Jebb M, Osmond C B. Photoinhibition and recovery in tropical plant species: response to

disturbance. Oecologia, 1994, 97, 297-307.

:

- [26] Liu Y Q, Sun X Y, Wang Y, Liu Y. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of *Urtica dioica*. Acta Ecologica Sinica, 2007, 27(8): 3457-3464.
- [27] Chi W, Wang R F, Zhang C L. Changes of photosynthetic characteristics of strawberry leaf under shading. Chinese Journal of Applied Ecology, 2011, 12(4): 566-568.
- [28] Gao Y W. Study on the biological character and conservation of endemic species *Torreya jackii*. Chinese Biodiversity, 1997, 5(3): 206-209.

| [1] .                                                                                                                                                 | . , 2005, 33(3): 432-432, 450.                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| [2] .                                                                                                                                                 | . , 2005, (10): 6-7.                                               |
| [3] ,                                                                                                                                                 | . 1. : ,                                                           |
| 1987.                                                                                                                                                 |                                                                    |
| [5]                                                                                                                                                   | RAPD . , 2007, 18(12):                                             |
| 2661-2667.                                                                                                                                            |                                                                    |
| [8]                                                                                                                                                   | ( ), 2011, 38(6);                                                  |
| 682-688                                                                                                                                               |                                                                    |
| [9]                                                                                                                                                   | 2002 22(10): 1645-1653                                             |
| [7] , .                                                                                                                                               | . , 2002, 22(10). 1045-1055.                                       |
| 176 180                                                                                                                                               | . , 2008, 23(2).                                                   |
| 170-180.                                                                                                                                              | 2012                                                               |
|                                                                                                                                                       | . , 2012,                                                          |
| 19(2): 201-204.                                                                                                                                       |                                                                    |
|                                                                                                                                                       |                                                                    |
| , 2012, 32(4): 1163-1173.                                                                                                                             |                                                                    |
| [13] , , .                                                                                                                                            |                                                                    |
| , 2004, 15(3): 377-381.                                                                                                                               |                                                                    |
| [14] , . ( <i>Lantan</i>                                                                                                                              | a camara) . , 2009, 29(5):                                         |
| 2701-2709.                                                                                                                                            |                                                                    |
|                                                                                                                                                       |                                                                    |
| [16] , .                                                                                                                                              | . , 2003, 14(2): 175–178.                                          |
| [16] , .<br>[21] , , , , .                                                                                                                            | . , 2003, 14(2): 175–178.                                          |
| [16] , .<br>[21] , , , , .<br>2005, 13(5): 387-397.                                                                                                   | . , 2003, 14(2): 175–178.                                          |
| [16] , .<br>[21] , , , , .<br>2005, 13(5): 387-397.<br>[23] .                                                                                         | . , 2003, 14(2): 175–178.<br>, , ,                                 |
| [16] , .<br>[21] , , , , .<br>2005, 13(5): 387-397.<br>[23] .<br>, 2007.                                                                              | , 2003, 14(2): 175–178.<br>,<br>. :                                |
| <pre>[16] , . [21] , , , , . 2005, 13(5): 387-397. [23] . , 2007. [26] , , , , .</pre>                                                                | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] , . [21] , , , , , . 2005, 13(5): 387-397. [23] . , 2007. [26] , , , , . 3457-3464.</pre>                                                   | . , 2003, 14(2): 175–178.<br>. ,<br>;<br>. , 2007, 27(8):          |
| <pre>[16] , .<br/>[21] , , , , , .<br/>2005, 13(5): 387-397.<br/>[23] .<br/>, 2007.<br/>[26] , , , , .<br/>3457-3464.<br/>[27] , , , .</pre>          | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] , . [21] , , , , , . 2005, 13(5): 387-397. [23] .</pre>                                                                                     | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] , . [21] , , , , , . 2005, 13(5): 387-397. [23] . [23] . [26] , , , , . 3457-3464. [27] , , . [28] .</pre>                                  | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] , . [21] , , , , , . 2005, 13(5): 387-397. [23] .</pre>                                                                                     | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] , .<br/>[21] , , , , , .<br/>2005, 13(5): 387-397.<br/>[23] .<br/>, 2007.<br/>[26] , , , , .<br/>3457-3464.<br/>[27] , , .<br/>[28] .</pre> | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] ,<br/>[21] , , , , , .<br/>2005, 13(5): 387-397.<br/>[23] .<br/>, 2007.<br/>[26] , , , , .<br/>3457-3464.<br/>[27] , , .<br/>[28] .</pre>   | , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , ,   |
| <pre>[16] , [21] , , , , , . 2005, 13(5): 387-397. [23] [23] [26] , , , , . 3457-3464. [27] , , . [28] .</pre>                                        | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] , [21] , , , , , . 2005, 13(5): 387-397. [23] .</pre>                                                                                       | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] , [21] , , , , , . 2005, 13(5): 387-397. [23]</pre>                                                                                         | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |
| <pre>[16] , [21] , , , , , . 2005, 13(5): 387-397. [23] .                              , 2007. [26] , , , , , . 3457-3464. [27] , , . [28] .</pre>    | , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , ,   |
| <pre>[16] , [21] , , , , , . 2005, 13(5): 387-397. [23] .</pre>                                                                                       | , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , ,   |
| <pre>[16] , [21] , , , , , , . 2005, 13(5): 387-397. [23] .                           , 2007. [26] , , , , , . 3457-3464. [27] , , . [28] .</pre>     | . , 2003, 14(2): 175–178.<br>, , , , , , , , , , , , , , , , , , , |