Fungal Denitrification Activity in Vertical Flow Constructed Wetlands as Impacted by Plant Species Richness, Carbon, Nitrogen and pH Amendments

W. L. Liu¹ · C. B. Zhang² · W. J. Han³ · M. Guan² · S. Y. Liu¹ · Y. Ge³ · J. Chang³

 R \diamond :9F
 \diamond 2017 / Ac \diamond :2N
 2017 / P
 :7N
 2017

 S
 S \diamond \diamond +B
 H \diamond .52
 .0T2 T \diamond .07 Tw6 \diamond TT.52
 8.52
 8.52
 8.52
 8.52
 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.52 TJ(.52wT .5(- .5(\diamond).52
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()
 8.5()

D Springer

(⋧ \diamond \diamond > >>> ≫ \diamond æ. 2011). I ⊘ ≫ \sim æ (\diamond ⊘) ⋧ С ≥ ≥ æ (**≥**. 2011; C ≥ **≥**. 2014). H w ≥ \diamond \diamond ờ∌ C ⋧ ⊘≱.

Р H, C, N ≱ W \diamond \diamond **≥** ≥ > > æ àÒ ⊘∌ С (Fa> w **≽**. 2009). A 20 ≫ , ⋧ Η \diamond ≫ 2 0 20 C > Ν \diamond \diamond 2 2 **≽**. 2011). I ≫ \gg (≫ C, N ⋧ \diamond ax⊳ w Η С ; w 20 w. ⋧

Т ≱ (PFDR) 22 ⋧ (FS) & > 30 22 ⋧ w ⋧ W \diamond \diamond (\sim), **≽** w ≫ \sim ≫ . E ≱ C. N ≱ H≽ ⋧ 20 w (1) ≱ w 2≽ W \diamond \diamond ➢ ▷ PFDR; (2) C, N ➢ H≽ \sim 20 232 FS 20 00 ;⊉ ≫ (3) æ \diamond \diamond 20 W ≫ 20 2 20

Materials and Methods

Т FS & w ⋧ T⋧ U ⊘.T FS & & war ar ≥ ⊘) 0.45 (w).T 1.2 () 0.45 (⊘⊘ w**≥**≥ - 262 ⋧ 0.24 ³ ≱ w≱ æ 50 🖉 W >0 ⊘ ≥ 30 ⊘ 30 ⊘ (≥ -(**≥** :1 2), 🏷 🏖 ⋧ (≥ :46),≥ :50 85). **&** w**&** W**≥> ≥**> **≽**. 2015). H≥≥≥ (L Pa> a≥ FS & & w & w B , ≱⊗ L ≱. (2015). \diamond С \diamond (Iris pseudacorus, Canna glauca, Scirpus validus > Cype*rus alternifolius*) w **≥** ≥ FS w-: 🄉 (UNP); ⋧ \diamond \diamond \diamond W \diamond æ (MI .). Eat> ≥ FS (=5, at> (MONO); ≽ \diamond a> wa≥ æ 5 w≱ ⊘ æ &a≽) w 20> 20 `₽ \diamond w ⋧ æ **≥**. 2011). T MONO 200 \diamond (æ \diamond æ 2≥ 2≥ W æ

20 FS MI 🖕 \diamond , $\diamond\diamond$, w ⊘,⋧⊘⊘ 5 FS ⋧ \diamond 20 ≥ 20 - \diamond 0 ⋧ W ≿a≥ a≥ a≥ . FS Č∕\$₽ ⋧ ⋧ **≽** (0.2 ³ 1) æ w≽ æ ⋧ > > ≽ (10 🄉) (L **≽**. 2015). T ⋧ M⋧ \diamond W≱ A 2013.

А A 2013, - 🌫 ⋧ a⇔ FS w ▷ ▷ w 30 0 ⋧ , ⊳ L ≽. (2015) w æ 30 0 W≵ 20 2 2 2 2 FSM 232 20 S a≫ FSM w 20 w≱ (2) ⋧ æ \diamond \sim , -) ar
ar
ar
ar
ar \diamond w æ 4 C PFDR. 2e 2e

Cο , w ≥ ≥& 20> 2, W2> 2 232 ₽ (H 20 ≥. 2012). T ▷ æ Č∕\$₽> 1 w**≽** 2.8 00 w (w) 🐲 (⋧⋧ w), ≥ ≥ 2.0 ¹ w≥ Н ▶. (2012). T PFDR w > > > > N₂O 20 \diamond N_2O \diamond ≱ w Tw ≱ \diamond w a>a>.Ca> w a N₂O \diamond w С æ Ø (GL), \diamond $\Leftrightarrow \Rightarrow (SS), \diamond \Rightarrow (SC),$ ≱ (ME).

(ET), ▷ (GL) ≥ ≥ ≥ (SA), W a> wa> 2e 2e \diamond æ $\Rightarrow > (10 N^{-1} w, C \Rightarrow \Rightarrow \Rightarrow S$ C22 1998). T 🔉 🖎 C≱ W≵ 5 C¹ w. S \gg \gg , NÒ 0 \diamond æ æ ≥æ≥ (AA), æ (AC), (SNI) ≱ ≱ (SNA) w ≽ N₂O ⊳, T ⋧ (X) N & w 10 N ¹ w, * *

22 N≽ W W C^{1} w, S \diamond GL (5 6280 ≫ D Læ 2010). A æ , æ (UNA) æ-⊳ 🔉 . T H W 🎓 🖒 \diamond w w H=2.8, 5.6 ≥ 8.4 ≥ 1.0 L¹ HC N≱OH ≱ ≱ , æ a> a> wHCNa+OH (UNA) w≱ ≱ ▷ . A ▷ w a> a> ⋧,⋧ w \gg w \gg \gg 500 μ L 100 L¹ 10 **≥** ≥ (H ≥.2012). A ≽ W ⊘a≥.

A	4		w		C/a	. 2	₽	W		-
				æ		20		(10%	/). S	a≥ -
	æ			W				10	æ	
					₽		⋧		⋧	
200		. Sa	₽		W	0	⋧	≥ 20	С	8,
⋧	w	۵,	⋧	⋧	W	æ₩		260	,	W
⋧		(H		a	→. 2012)	⋧	⋧			240> -
⋧	⋧	-	20	► (50)) L, D	G	ha⊳ I	2a⊘ a>	, D≱	•≱,
Ν	a	?	С	≥). Ì	N₂O ⊘	o a	₽	W		
		a> a	ÞÒ	æ	⋧	(S	⋧	GC-14	4B. K	

≥ ⁶³N Ja≥a≥) w (ECD) a> 80/100 P ≥ Q ≥ (3) (95% ⋧ 5% æ) ⋧ ≫ 2 ≫ w ¹). C 40 L Ò æ ≽ æ 65 æ 300 C, . F , N₂O ≥≥w \diamond æ 1 w $^{1})(L$ δ ⋧ (æ ð **≽**. 2015).

Sar Dar PFDR ⋧⋧ \diamond w æ w -w≽ ANO A W w Ø ≽ \sim w \sim æ (HSD) a≫ .H \diamond ≫ 2 Т 20 w p = 0.05W≵ W 2 SPSS w (11.5). W≱ ⋧ Č≫

Results and Discussion

U \diamond , a> Ca> ≽ \diamond PFDR ⊘ ⋧ FS \diamond C2 UNA F .1 (*p* < 0.05), T**≥** C≽ 1 . A w , SC > GL > PFDR ⊘ ⋧ UNP ≱ , GL ≱ SS ≱ ▷ ▷ PFDR MONO ≥ . C SC 🌣 🔉 PFDR MI 🖕 (F . 1). æ U æ Cæ \diamond W⋧ , ⊳ PFDR w æ Ò Ò $(p > 0.05, F . 1; T \ge 1). A$ æ ,

Ta ⋧	ble	1 Tw ≱	-wa> ANO . a>	A ≽⊳⊳	æ ⊘	æ æ	665 266
F		24C		T III ≽		F	S .
Ca	•	⋧	(A)	48.31	7	16.85	< 0.01
S	Ø	Ø	(B)	0.04	2	0.05	0.96
А	В			2.37	14	0.41	0.97
Ν		⋧	(A)	116.81	4	33.32	< 0.01
S	Ø	\diamond	(B)	4.55	2	2.60	0.08
А	В			10.21	8	1.46	0.18
Н	[≱		(A)	0.38	3	1.37	=0.05
S	Ø	Ø	(B)	0.15	2	0.84	0.78
A	В			0.36	6	1.66	< 0.05

PFDR ≱ 20 \sim w≱ Č∕₽ w -w ANO A (p>0.05, T ≥ W 1). Ι ≽ C ⊘ w 20 2 \sim \sim ⋧ Č∕3⊅ С 23 æ (F≱ w **≥**. 2009). S 0 CÒ \diamond æ (X) 2C . I ≽ CÒ 20 PDFR FS UNA, æ æ w 20 CÒ W æ C∕a⊳ .E 🔈 ⋧ ≽ ⋧ æ ≽. 2014). B≽ ≽. (2006) (H⋧⊘ ⋧ 40% ⋧ ≽ C \diamond С UNA, 🔉 N 🌫 W Č₽₽ PFDR ≽ FS æ ⊘ æ ≽ F . 2 (p < 0.05), T \ge 1 . A \diamond æ \diamond N⋧ , SNI ⊘ æ PFDR (F . 2)æ . P 🏽 w≱ 22 \diamond

Т

W

Č₽₽

≫

 \diamond

 \diamond

æ

W≵

PFDR (p > 0.05,N-≱ Ø æ æ T≽ 1).

McLæ ⋧ M≽ (2006)ò æ 0 N (⊘N æ æ) ⋧ ≽ (NH_4^+, NO_3) NO_2) 2 ⋧. æ ⋧ NO_2 N_2O C22 ≽ NØ \diamond Ò w æ . I Na ≽ \sim PFDR ⋧ w \diamond w \diamond C NÒ àÒ 2006). A (McLa M≽ æ Ċ₽₽ æ SNI PFDR FS NØ 20 S ≽. (1991) Fusarium oxysporum Gibberella fujikuroi w ▷ NO₃ ≥ æ æ NO_2 N_2O æ , w NO_2 N_2O . ò Т Ò w⋧ æ SNI, æ ⋧ W≱ \diamond w ≽ w≽ æ ≫ ъ NO₃ 2010). NO₂ (S D L≽ æ , UNA Ι Ò Н ≱ æ æ æ 6.00 6.89. C W Hæ æ æ , H ≽ (H=2.8, 5.6 **≥** 8.4) Č∕&

UNP PFDR (p = 0.05, F). 3). \diamond æ w⋧ ⋧ \diamond H^+ H^+ PFDR w Ò . (2010) ≽ Ò w æ 0 22 ⋧ w Η æ . C ≫ w Η 8.4 H ≽ 2.8 2 5.6 🌫 . PFDR UNP, MONO > MI 2 \diamond w 2 ≫ ⋧ æ 2 \sim Č∕∂∂ àÒ w H≽ 0 (*p* < 0.05, T≱ 1). Т 0 Ø æ PFDR w≱ 22 \diamond æ (*p* > 0.05, T≱ H≽ 1). ъ δ . B≽ ⋧ 0 w . (2010) . (2010) 🏽 ≥ 24-10-H-≱ 2 ≫ H w**≱** \sim w Ò ⋧ Þ Η . I \sim 20 Η 020 200 ⋧ æ Η . O w≯ ⋧ H≽ 23 20 W æ ð 0 \diamond 23 ⋧ \diamond PFDR (*p* < 0.05, F . <mark>3</mark>; T≱ 1). T W≱ Η æ 0 2 \diamond 2 \diamond æ \diamond æ . 2012) C/A Ø Η (ò 3 ≽ ъH እ \diamond æ 1983). (M ≥ ⊘ R Р 2 C/2 W≵ ⋧ æč 0 ⋧ ⋧ CÒ NO w , Η . A C≽ æ

SS PFDR, GL ⋧ \sim w≱ . A N ⋧ æ \diamond PFDR, 🔉 🏖 SNI ⋧ Þ. \diamond æ Ò 0 . H w æ 0 Н PFDR àÒ æ Ò . P 🏽 \diamond 0 0 C>>> \diamond PFDR . T Ò ⋧ PFDR 🄉 С w æ æ æ Η . R NØ ⋧ ≽ Ν ≽ \sim æ FS , C, N, ≱ H 200 Ò w Ò æ

Т Acknowledgements W W⋧ N≽ ⋧ S⊘ \diamond ▷ (L 17D010001) ≥ F Р æ Næ ≱ N≱ æ æ S⊳ ⊳F С ≽(51279121). ⋧

References

- Ba EM, S a CL, Ba a EJ (2010) C a H
- ≽ à t≥ w à> à> . A ⋧ R P ≥ B 57:233 266
- C≥≥ S, S KA (1998) E ▷ ▷ ▷ N₂O ≱ NO₃ > **a a a a** S 27(1):27 34 ≽ .B F \diamond
- C & J, F J, F S H & (2014) P & 20 \diamond \diamond 00 0 ⊘w≱.
 - E⊳ E 64:108 115
- ES E 64:108 115 J, M, Læ RJ æ (2010) I S H N₂O æ N₂ æ S æ æ A E M S 76(6):1870 1878 Fæ w JL, Gæ , S C æ (2009) M S æ S S æ S æ wæ : æ w. ES E 35:987 1004
- $H \ge 5.507 1004$ $H \ge 5.507 1004$ $H \ge 5.507 1004$ $H \ge 7.5 \ge 2.507 1004$ $H = MB, B \ge 2.507 (7):69 80$ $H = MB, B \ge EM, D \ge TJ (2012) F \ge 2.52 20$ $C \ge 2.52 20$ F = 2.52 20 F = 2.52 20 F = 2.52 20 F = 2.52 20⋧
- L, G & M, L S & (2015) F & G Car w & W & w & a & ac ⋧ L ⋧-

- R 44(8):2441 2450
- H, S 📚 📚 , 📚 T (1991) S , 📚 / 🗞 S ▷ ▷ P-450 , Fusarium oxysporum. FEBS L 244:11 14 244:11 14
- K, H & ME, B JA & (2014) L -S ¢∌ **& & & * *** w **≥** ≥ ≥ . E≥ E 72:40 46
- .SBB≥ 69(1):157 167 2 0
- J, L, $H(2012)R \rightarrow 2$ H, E, F (I $\Rightarrow \Rightarrow 2$ P \Rightarrow W \Rightarrow $\Rightarrow w \Rightarrow 22(4):518527$ H (2012) R - & & & H, E , F (II) w ≱
- CB, KSS, ≱J≱(2011) R ▷ ≱ ac≥ ≱ ▷ ≥ ≥ ≥ ≥ ≥ ≥ ≥
 ac>
 ac></t 160(3 4):503 508