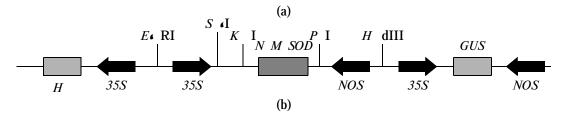

ICCN 1021 1427 Duration Journal of Diant Dimately	- 2012 Val 60 No 2 no 250	266 @ Disinder Dublishing Itd 2012
ISSN 1021-4437, Russian Journal of Plant Physiolo	zy, 2015, voi. 00, ivo. 5, pp. 559	00. © Fieldues Fublishing, Liu., 2015.

RESEARCH PAPERS

Heterologous Expression of a Halophilic Archaeon Manganese Superoxide Dismutase Enhances Salt Tolerance in Transgenic Rice¹

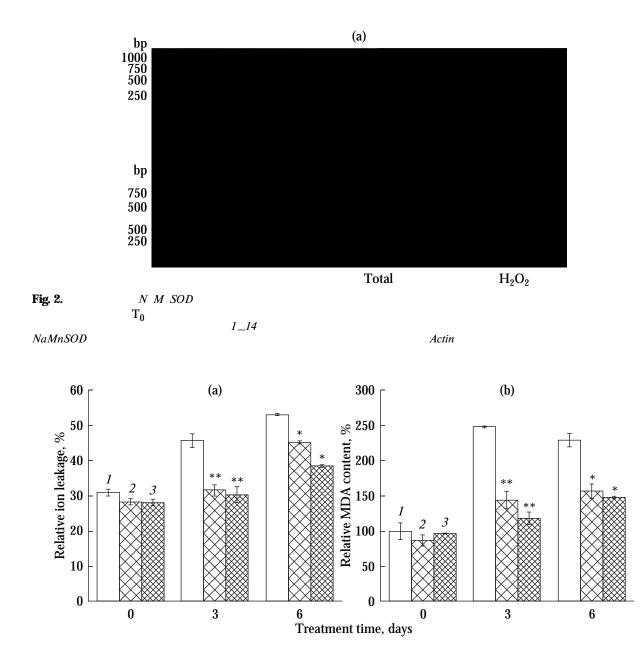

Z. Chen^{a, c}, Y. H. Pan^b, L. Y. An^a, W. J. Yang^a, L. G. Xu^a, and C. Zhu^{b, a}

 ^a College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China; e-mail: pzhch@cjlu.edu.cn
^b College of Life Sciences, China Jiliang University, Hangzhou 310018, P.R. China
^c School of Life Sciences, Taizhou University, Taizhou 317000, P.R. China

Construction of vector and rice transformation. Natrinema altun-	Reverse transcription–polymerase chain reaction (RT PCR). <i>N M SOD</i>	
ense 2	Script TM	
NaSOD	2 L N M SOD A: 2 Determination of ion leakage and lipid peroxidation.	
	2	
NaMnSOD SOD	25 C C1	
p1301 35S::N M SOD	25 C C ₂ C ₁ /C ₂	
Agrobacterium tumefaciens Oryza sativa	2	
A. tumefaciens 35S::NaMnSOD 2	Assays of superoxide anion radical and hydrogen peroxide. '-	
Screening of transgenic plants. T_0	$2 H_2O_2$	
2 T ₁	2 0.28/(M cm) Enzyme assays. 2	
50 g	4 C	
H ₂ O ₂	4 C	
Growth condition and stress treatment.		
37 C 2 26/22 C (200 mol/(m ² s)),	67 M 1.3 M 30 C H ₂ O ₂ 57 M 150 mol/(m ² s)	
	H ₂ O ₂	

 $$\rm H_2O_2$$ Measurements of photosynthetic gas exchange and chlorophyll fluorescence.

nt1 ATG ACT GAT CAC GAA CTT CCA CCA CTC COG TAC GAT TAC GAC GCG CTC GAA COG GCA CTG Μ Т D н ΕL P P L PYDYD A L Е Ρ А L aa1 nt61 TOC GAA CAG GTA CTG AOC TOG CAT CAC GAT AOG CAC CAC CAG GOC TAC GTC AAC GOC CTC aa21 S E Q V L Т W н н D Т н н Q G Υ V Ν G L nt121 AAC GCC GCC GAG GAG ACC CTC GCG GAG AAC CGC GAG GAG GGC GAC TTC GGC TCG ACG CCC ETLAENREEGDFG aa41 Ν А Α Е S Т P nt181 GET GOC CTC AAA AAC GTT ACT CAC AAC GEC TET GET CAC TAT CTC CAC ACG CTG TTC TEG aa61 G Κ Ν V Т Н Ν G С G Н Υ н Т F W Α L L L nt241 GAG AAC ATG TOC COC AAC GGC GGC GGC GAG COG GAC GGC GAC CTC GCC GAC CGC ATG GAG S G G Р D G Μ Р N G Е D L А D R Е aa81 F N Т nt301 GAG GAC TTC GGA TOC TAC GAG GEC TGG AAA GEC GAG TTC GAG GEC GCT GEC GET GEC GEC G Y EGWKGEF aa101 E D F S EAA Α G A A nt361 GET GEC TOG GCA CTG CTG GTG TAC GAT COG GTT GOG AAG CAA CTT CEC AAC GTC GOG GTC aa121 G G W A LLVYDPVA Κ Q L R N V Α V nt421 GAC AAG CAC GAC CAG GOC GCG CTC TGG GOC GCA CAT CCA GTG CTC GCG CTG GAC GTC TGG aa141 D D А W GAHP V кн Q G 1 1 Α Т D V W nt481 GAG CAC TOC TAC TAC TAC GAC TAC GGT COG GAC COC GGA GAC TTC ATC GAC GOC TTC TTC D ΥG PDRG aa161 E H S Y Y Y D F 1 D А F F nt571 GAC GTC GTC AAC TOG GAG AAG GCC GAA GAG GAG TAC CAG AOC TOC CTC GAG CAC TTC GAG V V N W E K A E E E Y Q Т С aa181 D L D Н F F aa201 .

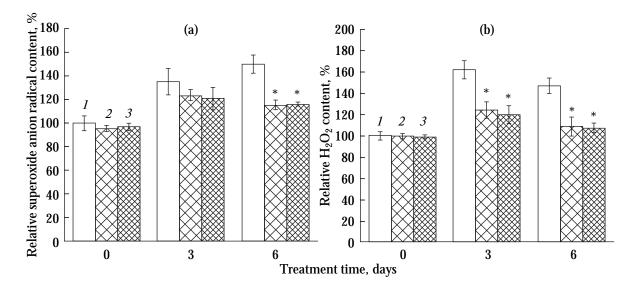

Fig. 1.	p1301 35S::N M SOD 35S	NOS	
N M SOD	N N	GUS	β
H			

•__

N M SOD

Effect of Salt Stress on Activities of SOD and CAT

$$\begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$$

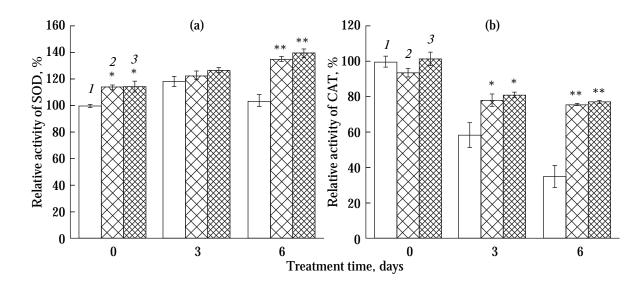

1 2 3

•_

* $P \le 0.05$; ** $P \le 0.01$

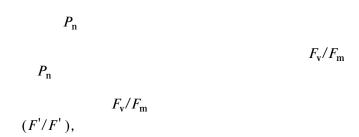
Effects of Salt Stress on Net Photosynthetic and Fluorescence Parameters

2



 H_2O_2

(•-)



1 2 3

 H_2O_2

•-,

	0	Physiol.	Plant
Oryza sativa i	Mol. Breed.	Anal. Biochem	1.
Cia Russ. J. Plant Physiol.	cer arietinum	Laboratory Manual	for Physiological Studies of Rice,
Curr. Opin.	Biotechnol.,	Gene Dev.	
0	0		
Russ. J. Plant Physiol.	,	iol. Plant.	Phys-
		0	
	Plant Physiol. Biochem.		Photosynthetica
Plant Sci.	Nicotiana tabacum		J. Plant Physiol.,
	Aquat. Bot.		
Electron. J. Bi	otech.,		
ତ			Plant Sci.,
	Tamarix androssowii, Mol.		Bruguiera parviflora
Biol. Rep. Natrinema altunense		J. Plant Physiol.	
PRC Inv. Appl. Publ., Agrobacterium	S Oryza sativa Plant J.		Photosynthetica
	Plant Mol. Biol. Rep.	cyrtoloba	Glycine Physiol. Plant.,