

Shengtao Jiang, Jianzhong Zhu, Zibo Wang, Min Ge, Huayue Zhu, Ru Jiang, Enmin Zong & Yujiang Guan (2018) E i ien y an me hani m o i o o a in hy o h o i e eg a ation in a te ate by e o a_2S_2 ₈, zone S ien e & Enginee ing, <u>10 1080 01 1 12 2018 11 1</u> 11 1

https://doi.org/10.1080/01919512.2018.1469969

Published online: 21 May 2018.

٢	
L	2

Submit your article to this journal 🗹

View related articles 🖸

🗧 View Crossmark data 🗹

Efficiency and mechanism of ciprofloxacin hydrochloride degradation in wastewater by $Fe_3o_4/Na_2S_2O_8$

Shengtao Jiang^{a,b,c}, Jianzhong Zhu^b, Zibo Wang^d, Min Ge^d, Huayue Zhu^c, Ru Jiang^c, Enmin Zong^c, and Yujiang Guan^c

^aKe₃, Laborator₃, of Jiangxi Province for Persistant Pollutants Control and Resources Rec₃, cle anchang Hangkong Universit₃, anchang cit₃, Jiangxi Province, P.R. China; ^bKe₃, Laborator₃, for Integrated Regulation and Resource Development on Shallow Lake of Ministr₃, of Education, Hohai Universit₃, anjing Cit₃, Jiangsu Province, P.R. China; ^cZhejiang Provincial Ke₃, Laborator₃, of Plant Evolutionar₃, Ecolog₃, and Conservation, Taizhou Universit₃, Tai Zhou Cit₃, Zhejiang Province, P.R. China; ^dCollege of Environmental Science and Engineering, Yangzhou Universit₃, Yangzhou cit₃, Jiangsu Province, P.R. China

ABSTRACT

The nanosized Fe_3O_4 catalyst was synthesized via a modified reverse coprecipitation method and characterized by means of a scanning electron microscope (SEM) and an X-ray diffraction (XRD) analysis instrument. The degradation efficiency and reaction rate of Fe_3O_4 in activating sodium persulfate used to degrade ciprofloxacin were determined from the catalyst dosage, oxidant concentration, and initial pH. The results showed that under the optimum conditions of a catalyst dosage of 2.0 g·L⁻¹, a sodium persulfate concentration of 20(concentTTJETT/T141Tf6.7499005.9993413.7874489.2597Tm()TJETT/T111Tf6.7

Figure 4. Effect of Fe₃ ₄, PM, Fe₃ ₄/PM, and Fe²⁺/PM technol-

Impact of the initial pH value on the degradation of ciprofloxacin hydrochloride wastewater

s] mad kd] amdc ean 1 if ad] sg]svgdmsgdo v]r sgd cdf u] c] sjam ne 🛦 unekawi jan]m gxcon gknopsdv]rsdv]sdvv]r]m rop]a]sqlxx gþr Hokidur sg]s meda med sa]k nme isjamir sgeld A rxrsdj g]r sgd gjf gdre odj n]k o]sd]f] jane je oneknwj ImM disgda] k h may]kj kind nmc isinm]ad sgd adus eng / cdf g] c] sinm Ngdm sgdo]kdv]rgfig sgd r ke]sd a]ch]kr mcda]kj]kjmd nmcjsjamr j jfgs ad s v |sg gxc qnvxk |nm- nm- | |nf sg d 🔍 ¯z |m v] sdq] mc

f dmda] sjarf

Z

z g c k dw nw c s m] o] s x s m] o]

X]mds]k gdmds]k dnafd]ı+x]mc gndkam ⊸i]ayamds]k

s]mad.kd]opmdc.eopn) [f opd a]mc]a.kd sg]s.km $C_t C = v]$ is [m] functional quadk shares by v | sg s | dt] mcsgd kind] geissinf ndæh idns $R \neq r$ i gif g v dikke di nm sg s Inf sgded s gdr ne elsus nac day i Indshr gdo g] mf dir ne sg d wink sjann dwdasdc] c jusjan s janek din d nim sg d ad] sjann ▶ gdmsgdø v]r sgd ad] sjnma]sd v]r | <u>|</u>m mc $k_{m} d k_{s}$ sgdad] sjamv]r elusdy v gdm sgdo v lu sgd gd] sjnmv]r sgd e] isdis v [sg] ad] s[mma] sd ne j jm sgdmvjsg cd ud] ⊾ sgd gd] sjamikav dc cnv m] mc v gdmsgdo v] i hnf o sgd ad] sjama] sd v] r nmkx | |m

Impact of sodium persulfate concentration on the degradation of ciprofloxacin hydrochloride wastewater

s]mad wddmeqn) [f qd] sg]s v gdmsgd cm}fd ne wnch | o dqw ke]sd [m qd] wdc eqn) sn $f z_{\mu}^{-}$ sgd [m qd] whaf nwjc] msw v n kco qn [cd | nqd eqdd q]ch] kr enq sgd wwsdi]mc]esdq] | [m qd] sjann sgd qdi n] kq]sd ne (b qn eknw] [m gxcqn g knq[cd v] r q] [wdc eqn] sn

s]mad iddmeqn1 [f qd]]mc]akd sg]s km C_t C v] ι [m] fnnc kimd] q qdk sjamig is v [sg sli dt]mc sgd kimd] q elss inf ndæb kims R v] ι g [f g v dkk cdi nmsq] sjaf sgd ed] s qd ι ne else nqc dq j [inds $b \iota$ \mathbf{P} [sg [m] [m v gdm sgd cm] fd ne inc b i o dq ι [s] sd v] ι q] [idc eqn1] sn f $z_{\mathbf{v}}^{-}$ sgd qd] sjam q] sd ne \mathfrak{h} quelow] [ang x cqn glaqic d v] ι q] [idc eqn1] sn] jm] gd I nqd sgd cm] fd ne inc b i o dq ι k] sd sgd f qd] sdq sgd I] ι sq] medq o nv dq ne]s] kx li nmsgd]s] kx s ι qe] d mc I nqd]mc

Table 1. Kinetic parameters of CIP b_{λ} Fe_{3 4} at different pH.

Initial pH	Pseudo-first-order reaction kinetic mode	Correlation R ²
2	$\ln(C_t/C_0) = -(0.00396 + 0.00778t)$	0.996
3	$\ln(C_t/C_0) = -(-0.00155 + 0.01508t)$	0.999
4	$\ln(C_t/C_0) = -(0.00396 + 0.00778t)$	0.996
5	$\ln(C_t/C_0) = -(0.05016 + 0.02925t)$	0.994
7	$\ln(C_t/C_0) = -(0.05871 + 0.06907t)$	0.997
9	$\ln(C_t/C_0) = -(0.01337 + 0.02618t)$	0.999
11	$\ln(C_t/C_0) = -(-0.00113 + 0.01128t)$	0.998

Impact of Fe_3O_4 dosage on the degradation of ciprofloxacin hydrochloride wastewater

 if gd
 ignvirsg]s v gdmsgd cniffdirne sgd
 js]kais

 v dad gdae d sh dkx
]mc
 f zg⁻
]esda

 j
 jm gd
 sjam sgd
 gdin
 jk glsdar ne
 js gnedowij jm

gxcom gknogied v dod option d sh dkx

]m s lignv l sg]s] knnf v jsg sgd jm ud] udc cnu] fd ne d sgd qdj n]k ajsel ne (s anekny) (m v) ·] nac (mf kx aj (velc)) (mkx ad] idsgd im gd] idc cnifdnesgd]s] kxis n kç im gd] id sgd nms] s] gd] adsv ddmsgd] s] kxis] nc inchi o dar k e sd]mc 1 ngd] sh d risdro] gsh b] sdc [msg d gd] sjamsn f dındaj sd i nad 🔍 - z im]s] kx+j+] mc sg dadenad dıng] m d sgdqdin]kq]sdnesgdxxisdi ₱Vgdmsgdnmrjosjamne sgd]s]kx1s dw ddc dc f z sgdad v] r m rh meh] ms [m ad] id [msgd ad] n] ka] sd na d dm] cd ad id [msd] c mnmd g] m v [sg] nms m cni fd ne inch f o dap k e] sd sgd f dmda] simm] i n ms ne 🔍 zv n kç mms im ad] id vgdm] daş]ım cdfadd v]ırad] gdc]mc sgd dwdurhd 🔍 ¯zvn kçadınmı i dcaxisii nvma dmginfordi sinm nmsgdnsgdgg]mc d nmsrr gd d ne dw dw h d m m rlydc d vnkç]kanıqd]svksg尾 ⁻z gdad svnakjçd ord] sjam vn kçorord dns k⊂ zeqni e oşgdoj nms] svişg h and nw] im in sgd c df a] c] sin ma] sd v] i adc dc unnf ds]k Rakaba]ds]k] mds] k

 $\mathbf{R} \quad {}^-\cdot + \ \mathbf{d}^+ \rightarrow \ \mathbf{d}^+ + \mathbf{R} \qquad -$

qn = 1 [f qd = 1] mc akd = 1 [s] mad nm k cdc sg]s $C_t C = v$] is [mn] fnnc kimd] q qdk sinmig is v isg s 1 d

Figure 7. Effect of catal st dosage on the degradation efficienc, of CIP ($a_2S_2 = 1$ g/L; CIP: 50 mg/L; Fe₃ 4: 2 g/L; pH: 7.0; 25°C).

Table 3. Kinetic parameters of CIP by Fe $_3$ $_4$ at different catalyst dosages.

Catalyst dosage (g/L)	Pseudo-first-order reaction kinetic mode	Correlation R^2
0.5	$\ln(C_t/C_0) = -(0.03271 + 0.01859t)$	0.984
1	$\ln(C_t/C_0) = -(0.01412 + 0.03134t)$ $\ln(C_t/C_0) = -(0.07971 + 0.04524t)$	0.995
2	$\ln(C_t/C_0) = -(0.05871 + 0.06907t)$	0.997
3	$\ln(C_t/C_0) = -(0.12ft/89940.06369t)$	/ /

t]mc sgd kimd] q eissinf ndæh jdms R v]r gifg v dik cdi nmsql sinf sgd ed]s qdr ne eispis ngcdq j jindshr \mathbb{P}^{7} gdm sgd cm·]fd ne sgd]s]kxis v]r fzg sgd qd] sinm q]sd ne ja qneknw] im gxc qn gknqicd v]r nmix i jm v gdm sgd cm·]fd ne sgd]s]kxis v]r q] jadc sn]mc fzg sgd qd] sinm q]sd v]r q] jadc sn]mc I jm gjr jmch]sdr sg]s sgd qd] sinm q]sd v n kc ad q] jadc]knmf v jsg sgd jm qd]adc cmi]fd ne sgd]s]kxis

Reaction mechanism

mcdqisgd nmcjsjamnene]s]kaus nmr i o sjamne f \downarrow]m nwjo]ns nm dnsaj sjamne f \downarrow]mco ne ne i f \downarrow jo qneknw] janv] ι cdf g] cdc]esdq] i janqd] sjam gd sns] k nqf]mh] ga nm sdus gdu ksu ugnv dc sg]s nqf]mh i]ssdqu v dqd qdi n dc janch]sjaff sg]s jo qneknw] janv] ι i mskx cd n i o nudc jansn knv i nkd kjq v djf gs nqf]mh i]ssdqu n dqjex sgd g] ch] k sxo d ne d unch i o dqu k

e]sd] eqdd q]ch]k g dmg af dws dqji dms v]r nm c sdc ax]cc af] dqs [m]i n ms ne dsg]mmk sdqsji qx a s]mmk]mc admymg [mmmd gd qd] sjam q]sdr ne dsg] mmk v jsg sgd sv n eqdd q]ch]kr \mathbb{R} z]mc z v dqd a]rh]kx sgd r]i d gd qd] sjam adsv ddm sdqsji qx a s]mnk]mc zv]re]usdqvg]kd sgd ni a [m] sjam ne admyng jammd]mc zv]re]usdq—k sg j i]qhds]k K n ds]k

∬f opd rgnvr]mdwrdqHdms]k, qdneeqddo]ch]k 1x1sdi]s]kxymf inch 1 o dq e dmgmf msgd d r ke]sd enq (ℓ cdf q] c]sjam Þvgdmg v]r]ccdc sn sgd wursdi sgd adin]ka]sd ne 🗇 v]r adc dc eani jm ∣jm gjr jmch]sdr sg]s sn Z dwijvsdc im sgd vxvsdi a s sgd nmsdms v]v ms i g vgdmdwdm-hd s v]r]ccdc sgd adj n]ka]sd ne V v]r qdj] qj] a kx knv dq sg] mv gdmmsg inf v]r]ccdc gd qd]rnmv]rsg]s s qd] sdc v [sg z] mc 🗷 ¯z jm sgd ixisdi jin sg] s sgd nmsdms ne eijdd a]ch]kro]ashbj]shaf hm //cdfa]c]shamv]radc dc

]mc ni o] qdc v [sg sgd qdi n] k q] sd ne $[g]_{1}$ fqd] s c [ædqdm d [mc h] sinf sg] s $[c]_{2}$ [m sgd qd] sinm ixisdi o k] xdc] cni [m] ms qnkd [m cdf q] c] sinm ixisdi o k] xdc] cni [m] ms qnkd [m cdf q] c] sinm i nqdn dq] esdq sgd] cc [sinm ne dw dw h d s sgd ixisdi isikk]m dæd sh dkx qdi n d is qneknwi [m sn ini d cdf qdd esdq sgd sqloo [mf] f dms admyne [ammd ne i o dqnwicd q] ch] k; z v] i] ccdc c qinf sgd dw dqli dms sgd qdi n] k q] sd ne is qneknwi [m im sgd qd] sinm ixisdi v] i cd qd] idc cdi nm sql sinf sgls sgd i dg] min ne d] sh] sinf o dqi ke] sd [c] v] i sg] sd f dmdq] sdc i o dqnwicd q] ch] k; z v ghg n kc] sh] sd [c] sn o qnc d i nqd i ke] sd q] ch] k; ¶g]qi] d sh]k→J[" ACS Sustainable Chemistry & Engineering –

- I m M J]ssnm]mc M g nf "xo dapa] m gdc InkxdsgxkdmdH ind mc dc quinigini inf ne nkx] 1 [cd-1 [cdw]]mmeiksa] sinm nkknv lada M di aq]mdi- enq eed sh d di n]k ne is queknvi imJ[" Environmental Science & Technology
 - d]mm] acdki n kj]mc M dmf "cunqs shim]mc Wic] shim ne nm sgd R qe] d ne

_K]f mds]sd |mds] wo dqH dmsr]mc So d sqmr no h |m drs[f]s]nm-⊥[" Applied Catalysis B Environmental

- X]mJ X gdm y l]m ♥]n x]mf]mc-k gdm "dsdqnfdmdn xkx]s]kxydc dqn ke]sd v jsg] -k f d y]xdqdc n akdgxcqnwjcd enq sgd dfq]c]sjann ne sgxkadmydmd⊥[" Journal of Hazardous Materials
- Journal of Hazardous Materials
- g]n X R R m I R m]mc / gn " hmdsh - ncdkimf]mc eeh jdm x ne R ke]sd]ch]k]vdc

_/

wic] sinm sn di n d W [sqn] mikind eqni \mathbb{P}] isdv] sdq ax 6 dqr ke] sd d W [mno] qsh kdr qn drift Separation and Purification Technology -