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Abstract 

 

To determine interactive effects of added copper (Cu) and arbuscular mycorrhizal fungi (AMF) inoculation on the 

photosynthesis of Elsholtzia splendens, a greenhouse pot experiment was conducted. Four treatments were used, including -Cu-

AMF (no Cu addition and no AMF inoculation), +Cu-AMF (Cu addition but no AMF inoculation), -Cu+AMF (no Cu addition 

and AMF inoculation), and +Cu+AMF (Cu addition and AMF inoculation). Cu addition did not change diurnal variation curves 

of the net photosynthetic rate(PN), the intercellular CO2 concentration (Ci), the stomatal conductance
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effect of AMF inoculation on the photosynthesis of plants 

under Cu stress. 

Elsholtzia splendens is an annual herb from the 

Lamiaceae family and is a Cu-tolerant plant used as 

ametal hyperaccumulator (Jiang et al., 2008). E. 

Splendens is widely distributed on Cu-polluted soils and 

Cu-mining wastes (Tang et al., 1999, Lou et al., 2004) 

and is reported to be an obligate symbiont with AMF 

(Yang et al., 2010). AMF in turn plays a central role in 

plantuptake and accumulation of heavy metals (Wang et 

al., 2006). In high concentrations, Cu significantly 

inhibits photosynthetic parameters (Ke et al., 2007); 

however, inoculation with soil microbes can significantly 

increase the photosynthetic ability of E. splendens (Li et 

al., 2015). We conducted a pot experiment and found 

significant interactions between mycorrhizal inoculation 

and Cu addition on the total seed number, vegetative 

biomass, and inflorescence number of E. splendens (Jin et 

al., 2015). Here, we were using the same experimental 

system to explore interactions between AMF and Cu, 

affecting the photosynthetic capability of E. splendensto 

ascertain the following: 1) How are Cu and AMF 

interactively affecting the daily photosynthetic process of 

E. splendens? 2) How are Cu and AMF interactively 

affecting the photosynthetic capability of E.splendens? 

These results provide a basic reference for the application 

of hyperaccumulators in the phytoremediation and 

ecological restoration of Cu polluted soils. 

 

Materials and Methods 
 

Soil preparation: Theculture medium that was used for 

the pot experiment consisted of vermiculite, sand, and 

peat soil (1:3:6, v/v/v). The soil medium was autoclaved 

under pressure (0.11 MPa) at 121°C for 2 h to neutralize 

all native microbial populations (Andrade et al., 2009). 

Subsequent to autoclaving, each kilogram of soil had the 

following properties: 20.16±0.26 gorganic matter, 

14.61±0.53 mgtotal N, 17.86±0.49 mg available P, and 

56.67±0.16mgavailable K. The pH (in water) was 

5.73±0.04. 

 

Seed germination: On the 20th of December 2012, seedsof 

E. splendens were obtained from clean soilin the Tainan 

village, Hong’an County, Hubei Province, China 

(31°30.632’N, 114°32.620’E; altitude of 118 m) after which, 

they were transferred to an incubator at room temperature. 

On the 5th of May 2013, seeds were surface disinfectedin a 

0.5% solution of hypochlorite and thoroughlyrinsed with 

sterileredistilled water.Then, they were sowed into the 

autoclaved soil mixture within 4×8 trays for germination in a 

greenhouse at the Taizhou University in Zhejiang Province 

of China (121°17’E, 28°87’N). 

 

Treatments: On the 1st of May 2013, plastic pots (15 cm 

deep, round, and with an inner diameter of 19 cm)were 

filled with 1.7 kg of autoclaved soil mixture, after 

sterilization via 75% ethanol. All pots were randomized 

and placed into the greenhouseunder a relative humidity 

of 70% ± 10.5% and a temperature of 30.0 ± 5 °C during 

the days and 18.0 ± 2°C during nights. Plants were 

illuminated with natural light. The experiment consisted 

of four treatments, including (1) -Cu+AMF (no Cu 

addition and AMF inoculation), (2) +Cu+AMF (both Cu 

addition and AMF inoculation), (3) -Cu-AMF (no Cu 

addition and no AMF inoculation), and (4) +Cu-AMF (Cu 

addition but no AMF inoculation). A total of 60 pots were 

used with 15 repetitions per treatment. On the 5th of May 

2013, 50 mL aliquot of CuSO4·5H2O solution (34 mg mL-

1) were added to each pot of the treatment groups 

+Cu+AMF and +Cu-AMF. The available Cu content at 

the start of experiment in the soil of all four treatments 

was 18.90 ± 2.05 mgkg-1. 

On the 21st of December 2012, bulk sandy clay soilwas 

collected from the top layer (0-20 cm) at a Cu mine tailing, 

which was located within the Chimashan Mountains, 

Yangxin County, Hubei Province, China (29°59.776’N, 

115°05.856’E; altitude 138 m). The accompanying plants 

were Xanthium sibiricum,Cynodon dactylon, Commelina 

communis, Artemisia capillaries,and Silene fortunei. The soil 

was sieved with a 2-mm sieve to remove all litter and 

vegetation, subsequently stored at -20°C until further use as a 

resource of soil microbes. On the 6h of May 2013, soil 

obtained from a Cu mine tailing was taken out of the 

refrigerator and incubated at room temperature for 48 h. 

TheAMF were inoculated, following a previously published 

procedure (Jin et al., 2015). In the no AMF inoculation 

treatments, 50 mL filtrate was applied to each of the pots to 

compensate for the microbe treatment of the other groups. 

On the 5th of June 2013, one 12-cm-tall seedling was 

transplanted into each pot. All pots were well watered and 

the soil moisture content wasmonitored via weight. 

 

Gas exchange measurement: 
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100, 50, 20, and 0 μmol m-2s-1. The resulting light 

response curves were analyzed via the revised exponential 

equation (Ye, 2007); 
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where α, β, and γ are coefficients, P(I) isthe net 

photosynthetic rate, I is the incidentPAR, and Ic is the 

light saturation point. The maximumleaf light-saturated 

net photosynthetic rate (PNmax), light saturation point 

(LSP), light compensation point(LCP), andthe apparent 

quantum yield (AQY) were calculated via the above 

equation (Ye, 2007). 

 

CO2 response curves: The CO2 response curves were 

measured between 09:30 and 11:00 h (Beijing time) on 

fully expanded leaves fromeach plant with a leaf 

temperature of 25°C, a light saturating intensity of 1,500 

μmol m-2s-1 (LI6400-02B; LED red/blue light source), and 

a relative humidity of 70 ± 5%. CO2was supplied from a 

small portable cylinder, filled to a specified CO2 pressure. 

Prior to the measurements, the leaves were equilibrated at 

thelight saturating intensityfor at least15 min to reach 

steady-state photosynthesis. Once stable, the 

photosynthetic capacity of the leaves was measuredat 

aseries of CO2 concentrations of 1,500, 1,200, 1,000, 800, 

600,400, 200, 150, 120, 100, 80, and 50 μmol mol-1. The 

interval between each CO2 concentration was 300 s and 

the entire CO2-response curves were analyzed via the 

rectangular hyperbolic equation (Ye & Yu, 2009). 
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where a is a coefficient, Ca is the concentration of 

atmospheric CO2, P(Ca) isthe net photosynthetic rate, and 

Rp is the light respiration rate. The maximumleaf light-

saturated photosynthetic rate (PNmax), the CO2-saturation 

point (CSP), the CO2-compensation point(CCP),and the 

apparent carboxyl efficiency (CE) were calculated via the 

above equation (Ye & Yu, 2009). 

 

Chlorophyll content determination: The leaf 

chlorophyllvalues were obtained, using a CCM-200 plus 

chlorophyll content meter (Opti-Science Inc., Hudson, 

NH, USA). The third adult leaf counted from the apex of 

a plant was tested. 
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Fig. 1. Diurnal variation curves in E. splendensin four different treatments. Data points represent average results of three plants per 

treatment ± standard deviation.-Cu-AMF, +Cu-AMF, -Cu+AMF, and +Cu+AMF indicate no Cu addition and no AMF inoculation, Cu 

addition but no AMF inoculation, AMF inoculation but no Cu addition, Cu addition and AMF inoculation, respectively. 
 

 
 

Fig. 2. Response of the net photosynthetic rate (PN) on photosynthetically active radiation (A) and atmospheric CO2 concentration (B) 

in E. splendens. Data points represent average results of three plants per treatment ± standard deviation.-Cu-AMF, +Cu-AMF, -

Cu+AMF, and +Cu+AMF indicate no Cu addition and no AMF inoculation, Cu addition but no AMF inoculation, AMF inoculation 

but no Cu addition, Cu addition and AMF inoculation, respectively. 
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Table 1. Interactive effects of Cu addition and AMF inoculation on PN, gs, Ci, E, LUE, WUE and CE in  

E. splendens in four different treatments, and the two-way ANOVA results. 

Treatments 
PN/ 

(μmol·m-2·s-1) 

gs/ 

(mmol·m-2·s-1) 
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Fig. 4. Interactive effects of Cu addition and AMF on the maximum net photosynthetic rate (PNmax, A), CO2 saturation point (CSP, B), CO2 

compensation point (CCP, C), and apparent carboxylation efficiency (ACE, D). -Cu-AMF, +Cu-AMF, -Cu+AMF, and +Cu+AMF indicate no Cu 

addition and no AMF inoculation, Cu addition but no AMF inoculation, AMF inoculation but no Cu addition, Cu addition and AMF inoculation, 

respectively. Different small letters indicate significant differences among the different treatments at p<0.05. FC indicates the effect of Cu addition. 

F-value and significance levels: *, **, and *** indicate significant differences at p<0.05, p<0.01, and p<0.001, respectively. 

 

 
 

Fig. 5. Interactive effects of Cu addition and AMF on relative 

chlorophyll content. -Cu-AMF, +Cu-AMF, -Cu+AMF, and 

+Cu+AMF indicate no Cu addition and no AMF inoculation, Cu 

addition but no AMF inoculation, AMF inoculation but no Cu 

addition, Cu addition and AMF inoculation, respectively. Different 

small letters indicate significant differences among different 

treatments at p<0.05. FC indicates the effect of Cu addition. F-value 

and significance levels: *, **, and *** indicate significant 

differences at p<0.05, p<0.01, and p<0.001, respectively. 

Interactive effects on relative chlorophyll contents: 

Both AMF inoculation and Cu addition significantly 

decreased the relative chlorophyll content of E. splendens, 

while their interaction significantly affected it (Fig. 5). 

 

Interactive effect of the chlorophyll fluorescence 

parameters: Compared to the -Cu-AMF treatment, Cu 

addition significantly increased F0 but significantly 

decreased Fm, Fv, and Fv/Fm. Compared to the -Cu-AMF 

treatment, AMF inoculation did not significantly affect any 

parameters (Fig. 6). Two-way ANOVA revealed that Cu 

addition had a significant effect on F0, Fm, Fv, and Fv/Fm, 

while AMF inoculation significantly affected F0, Fv, and 

Fv/Fm. The interaction between AMF inoculation and Cu 

addition significantly affected F0 and Fv/Fm (Fig. 6). 

 

Discussion 
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significantly increased the daily mean PN, gs, LUE, and 

CE in E. splendens. These results indicate that Cu 

addition inhibits photosynthesis in E. splendens via an 

alteration of gas exchange capability and a weakening of 

the light utilization and carboxylation efficiency, while 

AMF inoculation could alleviate these inhibitory effects. 

A similar inhibitory effect of Cu stress has been reported 

for E. splendens (Ke et al., 2007) and Limoniastrum 

monopetalum (Cambrollé et al., 2013), and a similar 

enhancement effect of AMF inoculation has been reported 

for Zea mays (Zhu et al., 2011). No interactions between 

AMF and Cu were observed in the above photosynthetic 

parameters, indicating that both factors might separately 

influence photosynthesis in E. splendens. Further study is 

required to verify these differences. 

The observed decline in PN might be ascribed to 

stomatal and/or non-stomatal limitations (Flexas & 

Medrano, 2002; Akhkha et al., 2017). Cambrollé et al. 

(2013) reported that excessive Cu reduced PN and gs but 

had no effect on Ci and the authors thus suggested that the 

observed reduction of photosynthetic activity might be a 

non-stomatal limitation. The significant Ci increase that 

accompanied the increase of PN and gs in E. splendens 

under Cu stress also indicated that the inhibition of 

photosynthesis in this species via excessive Cu might be a 

non-stomatal limitation; however, it might possibly be 

related to the inactivation of Rubisco and the limitation of 

its regeneration via photosynthetic electron transport 

(Cornejo et al., 2008, Zhu et al., 2011). This explanation 

is in agreement with previous studies on Cucumis sativus 

seedlings (Vinit-Dunand et al., 2002) as well as rice 

(Lidon et al., 1999). 

In this study, light and CO2 response curves were 

used to further evaluate the photosynthetic capability of 

E. splendens, treated with the addition of Cu and 

inoculation of AMF. In response to light and CO2, Cu 

stress significantly decreased PNmax, while AMF 

inoculation significantly increased it. This indicates that 

Cu stress weakens the photosynthetic efficiency due to 

toxicity for the photosynthetic apparatus (Danilov & 

Ekelund, 2001), while AMF could recover this efficiency. 

Furthermore, the interactive effect was significant. Cu 

stress significantly decreased LSP, LCP, AQY, and CSP, 

while AMF inoculation had no significant effect on these 

parameters, indicating that E. splendens requires greater 

light intensity to reach the saturation and compensation 

points (Ögren & Evans, 1993) as well as greater CO2 

concentration to reach the saturation point. 

 

 
 
Fig. 6. Interactive effects of Cu addition and AMF on F0 (A), Fm (B), Fv (C), and Fv/Fm (D). -Cu-AMF, +Cu-AMF, -Cu+AMF, and 

+Cu+AMF indicate no Cu addition and no AMF inoculation, Cu addition but no AMF inoculation, AMF inoculation but no Cu 

addition, Cu addition and AMF inoculation, respectively. Different small letters indicate significant differences among different 

treatments at p<0.05. FC indicates the effect of Cu addition. F-value and significance levels: *, **, and *** indicate significant 

differences at p<0.05, p<0.01, and p<0.001, respectively. 
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Three target sites of heavy metal interaction exist in 

photosynthesis, including photosynthetic pigments, 

photosynthetic enzymes, and photosystems (Aggarwal et 

al.,
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