This article was downloaded by: [Junhui Zhang] On: 27 April 2014, At: 22:17 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Chemistry and Ecology

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gche20</u>

Metal partitioning and relationships to soil microbial properties of submerged paddy soil contaminated by electronic waste recycling

Jun-Hui Zhang^a & Wei-Wei Fan^a ^a School of Life Science, Taizhou University, Taizhou, People's Republic of China Published online: 23 Apr 2014.

To cite this article: Jun-Hui Zhang & Wei-Wei Fan (2014): Metal partitioning and relationships to soil microbial properties of submerged paddy soil contaminated by electronic waste recycling, Chemistry and Ecology, DOI: <u>10.1080/02757540.2014.907282</u>

To link to this article: <u>http://dx.doi.org/10.1080/02757540.2014.907282</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Metal partitioning and relationships to soil microbial properties of submerged paddy soil contaminated by electronic waste recycling

Jn-H Zhn*nW-WFn

School of Life Science, Taizhou University, Taizhou, People's Republic of China

(Received 21 June 2013; final version received 25 February 2014)

Th n r on 🕅 n.a. ro ror n.m. r on n 🖝 r n n 0 r n -r n on of r n fi x r u.n. S u. frou.n ron nr (- 🛪 h Ŵ r r on n ro wr ff nr) 🛪r h⁰wr h of o n n of ... ro h o o r C,r n ... n h Zn, xhn C, xhn ZnnF Mn-ox nC. Thr C on nr on o 66.7, 35.5 n 62.4% of h r n n h of f r rox nr,r $\mathbf{\dot{m}}$ h on nr on of x h n C, x h n с, хhn , fr Znor 89.0 n42. -r n г^ц~ Zn n F Mn-ox n C x n 43.2,9.9 n 65.2% of h r n n n hoh,r .Th on n of , of h r on n h 89.0 n 42.7%, r n n of r Cnr r.Ho 🛪 r, a... r on n 🛪 ff orn u. -r n r. Orn Znn F Mn-ox n C wr o a, roor n a, o rn fr-ox ff n r.Th rxn 69.8n 64.7% of hrnnorn Znn FMn-ox n n of o n rxn 21.0% of h rn nF Mn-oxn C. C, n f r-ox n

Keywords: - 🛪 ; a. r on n ; o ; o n a.; o a. roor n a.

1. Introduction

▼ (- ▼) ro n ro Lu ror ron M.n ro hro h wh h ox n n o h n ron....n.1 Th on of h **...**, 0 л. roul h ror on (PAH), o h or n (PCB) n h n o ro.a.n h n h r (PBDE) n o, 5,6 **m**, n, 2, 3 r 4 n foo of on - ru, u, ro r - 🕅 r . Th n h nr or n a. n r r n of **u**. on ann an n h o n n n oh ... nnn of n fn on r h ouuun. Th, hr n of o n M. ro n 0 h n nh o 0.0.r r. 7,8 Howr, h ff of m.ror - 🛪 n 🚛 **n**. n r n on o n n rfi M. roor n M. h nr r on on.

h o n M. n M. roor n M. r Ιh n ro o n or of h ofo ofn onnrorfr n r (r n nr n). A ho h n 0 n 9,10 or hn h o oww.n r r, 11 h n nr 0 of o ox n Maxr, r r nr on o Maxro , h r **..** h r n on. In on. MO

^{*}Corr on n hor. Exa. : h n j nh @ . . n

whorno onr onforhatr onnn o.Howr, onxon mnha...ornofna...r onnn.Hr, wfoonhoxnoofa...r ofa...nha...orronnn-mrnrnnnnn

So u. roor n u. n nfl n h u.o. n o of u. hro h r of ro. 12 Th n no on nr hn nh h nh ... ro r ofho, or nation on on houton, when ration ron or, **n h n h** of **u**. o **w h h** .13 Th, h of o Mar roor n Mar Mar h n r ff on h u., fr on on/r on n rn. nh hrronhj.In -wrronnon roowyr. Howr, hrrfwr or rrn h , 🖈 o on 🚛 n Mronn, on u. nh nn of **u**roh o oro Tronn o Man rn onofhr ro.Afrhr 💵 🛪 o h u…rronh ∢rnu… ronn nh o nh ru...ro ror n 🚛 nrrr on n .Thronhwarhn on h nronofh....rornh.u...ronn.

2. Materials and methods

2.1. Research area

The r r h w on no - w nr $(28^{\circ}29' \text{ N}, 121^{\circ}20' \text{ E})$ o n h o h of Zh j n ro n, Ch n (F r 1). Th r h n for - w ro n for o r 20 r. Th r on h nor h rn - ro unon oon u. . Th u. n nn r on 1600 1700 u.u., of wh h 60.2% r w n M n S u. r. Th nn u. n r u. r r 17°C, wh u. x u. u.of 40.8°C, n u. n u. u.of -9.9°C.

2.2. Experimental set-up

Zhejiang Taizhou Taizhou

Frl. M. hown h. r. The woo wronn-wrnnr. CK n. o. The second from L. n. 45.

Chain n wr rforai on roai. Poo ai on nronn hoai wr rain fron whoai nonofon nr HNO_3 n HCO_4 . Th C, Zn n C n ho ai wr n xr , foown hai ho of Tr, 14 nofi h, nwroron fin h x h n, ron-, F Mn-ox n, orn nr fron. Thai on nof ho on wr rain n o ai oai ai on roair (ICP-OES, O ai 2100 DV, PrnEair, USA). Th rorr from hai on roair (ICP-OES, O ai 2100 DV, PrnEair, USA). Th rorr from hai on ron w n75 n 110%. Th o Hwai r n Hai rwh 1:2.5 o / w r non. 15 Th o orn ai rw rain hwoai on ai ho of - norai 16 Th o o nron (TN), o o ho horo (TP) n on xh n (CEC) of o ai wr rain orn o Brain rn M n. 17 C w rain orn o R. - h n r. 18

The on all on the height of t

3. Results

3.1. Soil physicochemical properties

T 1. Ph oh. on m.n o n	h on ro (m, n±S	u on nr on E).	of h o	u. n frou.h - 🛪
				En ron.n
				n r for o
	G1	G2	СК	$(C_h n, Gr II, H < 6.5)$
Н	4.49 ± 0.08	4.40 ± 0.23	6.08 ± 0.04	
Orn a.r	58.43 ± 4.72	44.30 ± 4.07	57.67 ± 3.58	
(-1)				
To N(\mathbf{M}_{\star} $^{-1}$)	$2,230.00 \pm 137.00$	$2,730.00 \pm 179.00$	$2,390.00 \pm 157.70$	
To $P(\mathbf{n}, -1)$	332.81 ± 17.71	419.68 ± 20.19	425.00 ± 18.74	
CEC (100^{-1})	3.703 ± 0.44	5.477 ± 0.47	5.600 ± 0.23	
C (%)	7.62 ± 0.98	8.40 ± 1.18	8.12 ± 0.79	
C (m_{\star}^{-1})	6.39 ± 0.30	16.04 ± 0.68	0.15 ± 0.03	0.3
Co(m1)	63.34 ± 1.38	76.08 ± 1.87	8.72 ± 2.43	
Cr(m1)	18.58 ± 0.88	30.54 ± 0.69	6.33 ± 1.03	300
$C(m_{-1})$	298.64 ± 37.06	406.62 ± 40.21	32.08 ± 2.11	100
$F(n_{-1})$	$33,882.00 \pm 894.23$	$35,574.69 \pm 907.18$	$15,598.68 \pm 1046.56$,)
$Mn(\mu, -1)$	369.47 ± 30.12	345.39 ± 28.40	324.81 ± 24.66	
P $(\mathbf{u}_{-1})^{\prime}$	36.22 ± 2.17	46.70 ± 2.93	33.44 ± 1.33	250
Zn(u1)	205.70 ± 40.88	255.75 ± 43.67	111.99 ± 37.77	200

TN, '	ΤР	n		on	n n	n		h h ^r	0		U.,	۳W	rox	X .U.,		n,	wh r	h
CEC	of	0	G1	Ŵ	32.	39	n	33.87%	0	₩r	h n	ho	of G2	n	CK, r		, n	n
h	0	G1	h	n	ffi	n		ff r n			for J	U.,.	on .	.n	on.			

10

5

4

Chemistry and Ecology

Th o	of	G1 n (G2 ∖r	nfi n	nr h	₩h r	м.	,wh ffrn	n
------	----	--------	-------	-------	------	------	----	----------	---

h F Mn-ox n, ron n xhn fr on of C no G1 n G2 wrh hr h n ho of CK. Th r on n wh r o . Lo oo r n n r of F Mn-ox n - o n C n w w r-rr o . 29 L r r on n C fr on on wro r , for h non-r fr on. How r, no on n h n wr o r u on h hr o . Ah h ro or on of h xh n n ron fr on wro r G1 n G2. Cou. rn wh h r fr on of C n Zn, h n of r C w r o wrn n frou .39.64 o 45.23%, 27.07 o 35.71% n 42.78 o 63.38% for o G1, G2 n CK, r .

15

20

T 3. Corr on o ffi n	(r) for r on h	🛪 noror	n h	M. on n n	ff r n fr	on of h	o (<i>n</i> = 45,	3 × 3	o × 5 m.).
Zn _{F1}	Zn _{F2} Zn _{F3}	Zn _{F4} Zn _{F5}	C _{F1}	C _{F2} C _{F3}	C _{F4}	C _{F5}	C _{F1} C _{F2}	C _{F3}	C _{F4} C _{F5}
Sfr -0.817** In r -0.329	-0.331 0.282 -0.195 -0.079	$-0.289 -0.701^{**}$ -0.420 -0.483	-0.708^{**} -	-0.628^* -0.633^* -0.441 -0.419	-0.398 -0.229	-0.534^{*} -0 -0.286 -0	$0.633^* - 0.432$ 0.209 - 0.335	-0.402 -0.221	$-0.492 - 0.806^{**}$ -0.351 - 0.367
C -0.467 P rox -0.522^*	-0.293 -0.233 -0.174 -0.284	$-0.479 - 0.645^{**}$ $-0.259 - 0.596^{*}$	-0.657^{**} - -0.553* -	-0.574^* -0.541^* -0.458 -0.410	-0.347 -0.577^*	-0.469 - 0.000 - 0.00000 - 0.00000 - 0.00000 - 0.0000000 - 0.00000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.00	-0.391 -0.260 -0.246	-0.395 -0.335	$-0.372 - 0.639^{*}$ $-0.384 - 0.599^{*}$
Ur -0.598^{**} A by h -0.378	-0.409 - 0.385 $-0.381 - 0.522^*$	$-0.437 - 0.772^{**}$ $-0.207 - 0.528^{*}$	-0.787** - -0.434 -	-0.707^{**} -0.758^{**} -0.517^{*} -0.451	* -0.428 -0.634*	-0.745^{**} -0.408 -0.408	$0.756^{**} - 0.563^{*}$ 0.386 - 0.344	-0.502 -0.808**	$-0.503 - 0.790^{**}$ -0.214 - 0.329
To r -0.783** M -r n r -0.592*	-0.331 - 0.015 -0.421 - 0.019	$-0.328 - 0.871^{**}$ $-0.359 - 0.653^{**}$	-0.872^{**} - -0.519^{*} -	-0.705^{**} -0.736^{**} -0.644^{**} -0.557^{*}	* -0.431 -0.584*	-0.646^{**} $-0.00000000000000000000000000000000000$	$0.761^{**} -0.460$ 0.436 -0.437	-0.584* -0.594*	$-0.458 -0.906^{**}$ $-0.387 -0.539^{*}$
Annon ox r -0.235 D n r fi r -0.109	-0.149 -0.019 -0.052 -0.363	-0.365 -0.396 -0.197 0.232	-0.475 - 0.072	-0.326 -0.355 0.054 -0.047	-0.371 -0.352	-0.407 -0.061 -0.061	0.430 - 0.215 0.073 0.009	-0.426 0.025	-0.097 -0.286 -0.167 -0.129
S f r-ox n r -0.329 S f r-r n r -0.366	$\begin{array}{c} -0.006 & -0.038 \\ -0.257 & 0.468 \end{array}$	$\begin{array}{r} -0.135 & -0.435 \\ -0.124 & -0.052 \end{array}$	-0.449 - -0.096 -	$\begin{array}{r} -0.242 \\ -0.223 \\ -0.215 \end{array}$	$-0.254 \\ -0.275$	$\begin{array}{ccc} 0.028 & -0 \\ -0.235 & -0 \end{array}$	$\begin{array}{ccc} 0.159 & 0.047 \\ 0.205 & -0.243 \end{array}$	$-0.506 \\ -0.125$	-0.004 - 0.511 -0.238 - 0.089

- No :**Corr on n fi n h 0.01 (\mathfrak{P} , n = 45).
- *Corr on nfin h 0.05 (mo- n = 45). F1, x h n fr on; F2, r on fr on; F3, F Mn ox n fr on; F4, or n fr on; F5, r fr on.

Chemistry and Ecology

T 4. D from m. r r on n ∇ n m. ro r , o h o h m. h r r n m. on n r on n ff r n form (n = 45, 3) $\times 3$ o $\times 5$ m.).

En on	M nrrron	S
Sfr	$= 17.738 - 0.150 \text{ Zn}_{x \text{ h} \text{ n}} - 4.263 \text{ C}_{r}$	$R^2 = 0.766, p < 0.001$
In r	Ar rrmo	_
С	$= 0.113 - 0.003 \text{ C}_{x h n}$	$R^2 = 0.432, p = 0.008$
P rox	= 38.740 - 0.024 C r	$R^2 = 0.355, p < 0.019$
Ur	= 0.625 - 0.105 C + 0.001 N	$R^2 = 0.756, p < 0.001$
A h ⁰ h	= 2.062 - 0.927 C F - Mn ox n	$R^2 = 0.652, p < 0.001$
To r	= 1,729,902.3 - 651,583.6 C	$R^2 = 0.890, p < 0.001$
M-r n r	= 61,741.2 - 38.6 Zn	· *

Chemistry and Ecology

n o . A ho h ox n 🛪 ro r n h u. ox on r on nun r on of h r o f rfloon, 33 un ro r r un n oonorrof.....n owrhnho of CK. Th nn of o rwy n fin orr \mathbf{w} h h on n of x h n Zn (p < 0.01), r Zn (p < 0.01),x h n C (p < 0.01), r on C (p < 0.01), F Mn-ox n C (p < 0.01), r C (p < 0.01), x h n C (p < 0.01), F Mn-ox n C (p < 0.05) n r C (p < 0.05). Ho \mathbf{w} r, on \mathbf{h} r C n no n \mathbf{h} on, x n n ~89.0% of hronnhnnoforr (T4) w...nnhhr onno r waa noh aa on of r C.So froa hon roh h n rrorornnn, whr h nn of hh nn of 🚛 - r \mathbf{x}_{-r} - r n r n G1 n o G2 \mathbf{w} r n r . Th n n of \mathbf{x}_{-} - r n r \mathbf{w} n fi n orr \mathbf{w} h h on n of x h n Zn (p < 0.05), r Zn (p < 0.01), x h n C (p < 0.05), r on C (p < 0.01), F Mn-ox n C (p < 0.01), or n C (p < 0.01), F Mn-ox n C (p < 0.01) n r C (p < 0.01)0.01). Ho ∇ r, on r Zn n nro n o h on, x n n 42.7% of h r on n h n n of ω . -r n r . Th n n of ω and ω ox r fl $\nabla n \ 643 \ n \ 2915, 850 \ n \ 1929, \ n \ 1105 \ n \ 3738 \ r \ of \ r \ o \ for \ o \ G1, G2 \ n \ CK, r \ . T_h \ n \ n \ of \ n \ r \ n \ h \ o$ fl 🛪 n 40 n 450 r of r o, ∖rh. u...x. u..of 3738 r of r o (CK, 15), n u.n u. u. of 643 r of r o (G1, 80). Ho 🛪 r, n h r uuuon ox rnor nrfn r wrnfin orr whu... on n.Low nn of SOB nSRB wrorn o. Th SOB rn from 10,000 o 33,000 r of r o, where h SRB rn from 18 o 14,634 rofr o.N hr SOB nor SRB 🛪 n fin orr 🛪 h.u., on n (T 3).

4. Discussion

Thon-rau, aurorr nof-wy h noon r nau.au.on nh o, howofihw.ronn m.Th, h M. On of u. u. h r ff on h o o u. Lowron u. n u. roorn u. n n wrornh o whn ou.r whh on ro , when hour on the second of t r 🗖 r o.Inr 🛪 non o hhn oh un onofrun nh run, onnh-wronun, o, hohhro nror n mor n ow...on w...n on hn n ho h n o on w...n wh n and .34 Th ff and onr ohnronof ffrnon.9 Th on n of x h n Zn, x h n C, F Mn-ox n C, r Znnr C wrrw…rhff how…rorohr xn, oh ա. nh xhn (o)fronnh ron fron nh h ա.o. M nh fora... xr ron nh or ffono ա. ro n oh ա.. ru⊥r.35Howr,u⊥ o whhFMnox hownru⊥ u.o. hn nhroxon on u⊥ hr ofu⊥, ou⊥u⊥ r r Chnnhroxon on M. no fhrrnn fi unr. 36 Ahohun nhr fron , m. nm.ornro oo ornhm. nhoo on, rrC.Ahmomo non o m., Crm.r n non-r ron m.nr, orn m.r, nF Mnox m.nr. 37

So mor n mor n h mor n or on n of o . Some me ro ro oroh nh roroh hn u, r f n n r on. fir on, nrfi on n nrfi on 38 nfi n nfl r on n 🚛 $\mathbf{M}\mathbf{O}$. 12,39 Frhrmor, r n mmo hro h or n on ▼ .40 Ho ▼ r, h ff ▼ r r onon-r fr on, for r r on n whhr rh of Brro w 41 n H u.on ., 42 who h .u. ro -.u. r on n no nnr norn on u. . The u. on r n o mo 0 h or on of o marcor n marconar on .D on on **...**nor fr on of h nho,hrnor.u.orf r 🗤 0 on м. м. r-0 h r of h o u. . 43,44 In on, hr ox n on \mathfrak{m} on 0 ro or of Ehnh floo f n ro r 🐲 o. nhr r n on n on of r n on on. Un rr n on o , n n h on on, C wh fi - on nn o orr - or on on r ron fi л., 0- r , h nr n h fr on of F Mn-ox n C. Th o n h C ₩ r ο. nor hnZnoEhhnnnh n

0 🚛 roor n 🚛 🕅 Non h, and fi on of h o h r fr on of r .U., ownonr on oh rn. On o ♥ , onfir..... h r r h m. ro h oo ro wrn o rn ron....n for, x n on hn, hrnnr ffrn a. nrhfi on on.Frhrauor, hff of **u**. roor **n u**. rr oh, 🕰 ron ron 🚛 n. Ho 🛪 r, h ff whnow rohnhn nhohohm. hrr of h 0.

To or now, h h fir n-h n n h h.u., fr on on/r on n of C, Zn n C n h rr on h who u., ro ro r n o on u., n u., ro r - w r n.

Acknowledgements

References

- 1 L n A, C ZW, Won MH. En ron \mathfrak{m} n on \mathfrak{m} n on from r n G , o h Ch n . J M r C W M n . 2006;8:21 33.
- 2 Won CSC, D or n-A n NS, A n A, Won MH. E n of x r of \mathfrak{m} . from r \mathfrak{m} \mathfrak{m} ro n n G , Ch n . En ron Po . 2007;148:62 72.
- 3 Won MH, W SC, D n WJ, Z, L o Q, L n AOW, Won CSC, L a. r WJ, Won AS. Ex or of ox h a. -A r wof h of n on ro ron - w r n. En ron Po . 2007;149: 131 140.
- 4 D n WJ, Lo PKK, L WK, B H, F JM, Won MH. A Mohr noox of PAH nh m. nTSP n PM2.5 n ron wrrn noh Chn. A mo En ron. 2006;40:6945 6955.
- 5 Z_h o G, W n Z, Don MH, R o K, L o J, W n D, Z_h J, H n S, , M M. PBB, PBDE, n PCB n_h rofr n ron - w ... nZ_h j n Pron, C_hn, n_h ron or .S To En ron. 2008;397:46 57.
- 6 FJ, ZhoQ, LJ, LW, WnT, ZhnQ, JnG. Hhofh м. nr (Oryza sativa L.) from. E-wrrnrnoh Chnnonroh м. nhh. Ch моhr. 2008;71:1269 1275.
- 7 Z_h n W, W n H, Z_h n R, , Q n P, Won MH. B r on n n PAH on n n o n ron r ron n r n C_h n . E o ox o o . 2010;19:96 104.

- 562 573.
- nronof.u., (A,C,H,Zn)or nhron 9 Ch ron S, S S. Tox no. So Bo Bo h a. 2007;39:2329 2338.
- 10 Ch ron S, S S. Tox n r on of C, C, n on o r n h ro n nr on o h ... r on n . E o ox En ron S f . 2008;70:1 9.
- 11 Sh W, B r J, B hoff M, T r o RF, Kono AE. A o on of m. ro 0.**....** n o.u. o on n
- Wh , hrow, w, n h ror on on w.n on A En ron M ro. 2002;68:3859 3866.
- 12 G GM. Infl n оп м. мо n on for or м. on. G o гм... 2004;122:109 119. 13 K r E, Bo JM. M ro ммо on of C r from C O n h o . B o o h м. r . 2004;6 from C O n h o . B o o h m. r . 2004;69:227 239.
- 14 T rA, C. Ju. PGC, B on M.S. n xr on ror for h r on n of r r a. . Ch a. 1979;51:844 850. Aŋ
- (Drun on of). Orr h h Norun n W n, 15 - norm_L1083. B mm_n r A H_n r 38, A-1021. A r : V nn ; 1989.
- 16 Mon_{h} 16 Mon_{h} 16 Mon_{h} 17 Mon_{h} 17 Mon_{h} 17 Mon_{h} 18 Mon_{h} 17 Mon_{h} 18 Mon_{h} 17 Mon_{h} 18 Mon_{h} 17 Mon_{h} 18 Mon_{h} 17 Mon_{h} 17 Mon_{h} 18 Mon_{h} 17 Mon_{h} 18 Mon_{h} 17 Mon_{h} 18 Mon_{h} 17 Mon_{h} 17 Mon_{h} 17 Mon_{h} 17 Mon_{h} 18 $\operatorname{Mon$
- r². Au So A ron, So S So Au W on n: M on; 1982. . 595 624. 18 -h n rL1061. B uu n rKorr r n n r h n F n o n (Ph ru n on r n r on of o h n 2 uu r). -r r h h Noru n n W n, H n r r.a.n on of 38, A-1021. A r : V nn ; 1988.
- 19 A f K, N nn r P. M ho n A So Mrooon Bohur:C . N 🛪 or :
- A m. Pr ; 1995. 20 Bo JM, Ch n CM, S r r JM, Lo MJ. Ex r on n r fi on of rox from.o.So Bo Bo h m. 1987;19:61 67.
- 21 KnrE, GrrH. Shor-rau.of or run on of unon u Bo n oor 🚛 r Fr So . 1988;6:68 72.
- nCS.R rhu.ho of ofr.Bjn:Arrr; 1988..243279.nChn 22
- 23 ShnnrF, Mr on W. n -, CM- n n r no, nu ro u ho. So Bo Во h м. 1990;22:511 515.
- 24
 E
 F, T
 MA.Pho
 n
 n
 o
 .So
 Bo
 Bo
 h
 .1977;9:167
 172.

 25
 Ron
 TM, P
 r IL. M
 ro
 r
 on
 ronsuln
 ox
 C
 .M
 ro
 o
 2000;38:358
 364.
 26
 GB
 15618-1995
 En
 ronsuln
 n
 r
 for
 o
 n Chn
 .
- 27 Lu., r o M, A Juo P, N Juo D, Ar n o M, S n on D, Vo n P. S r on of h M. nrn o of N (I). En ron Po . 2003;124:247 250. 28 C o r-H r B, S S, Corh n F. Infl n of m. roor n m. on C
- on nh rh ohr of for o . So B o B o h a. 2008;40:2433 2451.
- 29 Lo, Jn, WL, Son J, WS, LR, ChrP.A u. on nhu. fron on of Cn orr whC-rhw wr.Goru...2003;115:113 120. 30 ZhoD, ChnH, Ho, Wn .Fr on on of hu. no
- ff n o 0 n .u. 0 n . P o h r . 2002;12:309 319.
- 31 Jn SJ, Jn K, Shn E, Pr S, Pr C. Chr r of frox on n wr o . J Burkholderia
- М го Во hno.2005;15:716 721. 32 G rr o F, I r V, С м. CG, G r -Gon MT. R п h мо of C, C п P п п 0 what not ho ho at rfour n ho hor ro .ErJSo S .2006;57:95 105.
- 33 L W, S_hn S, R _hNP. M ro oo offloo r .FEMS ... ro R .2000;24:625 645. 34 B ON, H n RJ, B r o OA. B r n o ... ro n n ... ff
- on aun on of woo with , n or o r.BoFr So .2005;33:85 94. 35 Bh hr P, Tr h S, Ch r r K, Ch r or A, B n P. Fr on on n o of n
- h r m. on m. ro ro r n w rr o. Ch mo h r. 2008;72:543 550.

- 43 L n M. B o a. on of a. M. roor n M.- ro n nuorn for o nu.ErhSR. 2000;51:1 31.
- 44 L n M, Kr n -R rC, ArB. Mroorna, a, orn: o.m. ronwhohro on n n \mathfrak{m} - o \mathfrak{m} r \mathfrak{m} n \mathfrak{m} . So B o B o h \mathfrak{m} 2005;31:1639 1648. 45 Sr n n M n T \mathfrak{m} of Z j n Pro n . Th \mathfrak{m} of T ho . Ch n h , Ch n In Ch n : H n n
- M Pr ; 2001.