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Abstract: Fine-scale spatial genetic structure, which indicates the nonrandom spatial distribution of genotypes or genetic diversity,

has important consequences for population biology. The study of fine-scale spatial genetic structure can provide an understanding of

the key processes and mechanisms involved in the maintenance of plant populations. Glechoma longituba is a perennial herbaceous

clonal plant species that belongs to the Labiatae family. Glechoma longituba is a herb of medicinal importance that is widely

distributed in China and its phenotypic characteristics are variable among different habitats. The genetic diversity, clonal diversity

and fine-scale spatial genetic structure of Glechoma longituba plants collected from three different patches (Shuiqubian, Pinggecun,

and Zhulinxia) with different habitats were analyzed using inter-simple sequence repeat (ISSR) molecular markers. In addition, the

correlation with habitat he
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polymorphic loci, P = 31.15%; Shannon informative index, | = 0.1601; Nei’s index, h = 0.1096). The genetic diversity of Glechoma
lonituba was highest in the Shuiqubian patch (P=21.31%, 1=0.0965, h=0.0627), that in the Pinggecun patch was second highest
(P=8.20%, 1=0.0354, h=0.0226), and that in the Zhulinxia patch was the lowest (P=3.28%, 1=0.0120, h=0.0073). 2) Clonal diversity
of Glechoma longituba at the species level was relatively high (Number of genets, G=73; Ratio of genets to ramets, G/N=0.2332;
Simpson’s diversity index, D=0.8843; Genotypic evenness, E =0.8192). The clonal diversity of Glechoma longituba was highest in
the Shuiqubian patch (G=60, G/N=0.5660, D=0.9693, E =0.8747), that in the Pinggecun patch was second highest (G=10,
G/N=0.1087, D=0.8430, E =0.9075), and that in the Zhulinxia patch was the lowest (G=3, G/N=0.0260, D=0.2642, E =0.3599). 3)
The genetic differentiation coefficient (Gs) was 0.7129, which indicated that most of the genetic variation existed among patches,
whereas little genetic variation existed within patches. The estimated gene flow was as low as 0.2004. 4) Spatial autocorrelation
analysis showed that the autocorrelation coefficient of Glechoma longituba in the Zhulinxia patch was significantly positive at a
distance of 100 cm with an X-intercept of 205.994 cm but significantly negative at a distance of 350 cm. The autocorrelation
coefficient in the Pinggecun patch was significantly positive at a distance of 200 cm with an X-intercept of 235.388 ¢cm but
significantly negative at a distance of 450 cm. The autocorrelation coefficient in the Shuiqubian patch was significantly positive at a
distance of 150 cm with an X-intercept of 240.336 cm but significantly negative at a distance of 350 cm. Analysis with the SPAGeDi
1.2 software showed that the strength of spatial genetic structure in the Pinggecun patch was greater than those in the Shuiqubian and
Zhulinxia patches. The Sp ratio (used to compare the extent of spatial genetic structure among populations) statistics for the
Pinggecun, Shuiqubian, and Zhulinxia patches were 0.0944, 0.0558, and 0.0556, respectively. The genetic diversity, clonal diversity,
and fine-scale spatial genetic structure of Glechoma longituba might be affected by propagule dispersal characteristics, human
disturbance, and trade-off between investment in sexual reproduction and clonal propagation and might be a consequence of

adaptation to habitat heterogeneity.

Key Words: Glechoma longituba; clonal plant; fine-scale spatial genetic structure; ISSR
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Table 1 Conditions of the different patches of Glechoma longituba
Patch
Geographical location Habitat Slope Altitude m Size of patch
Shuiqubian 30°09.779N  119°13.176E NW30° 97 600x400 ¢m
Zhulinxia 30°10.602N  119°11.794E NW30° 144 600x400 cm
Pinggecun 30°10.038N  119°11.977E SE30° 103 1020x200 cm
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1
Fig.L Distribution of the individuals and genotypes of Glechoma lonituba in different patchs
A Zhulinxia patch B Shuiqubian patch  C Pinggecun patch
1.2
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3
Table 3 Genetic diversity of Glechoma lonituba in different patches
Percentage  Shannon Shannon  Nei Nei’s
Patch Number of  Number of  of polymorphicloci P, % informative index (1) index (h)
individuals polymorphic loci
Shuiqubian 106 13 2131 0.0965 0.0627
Zhulinxia 115 2 3.28 0.0120 0.0073
Pinggecun 92 5 8.20 0.0354 0.0226
Species level 313 19 31.15 0.1601 0.1096
2.2
4 3
1 3
A
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Fig.3 Correlograms showing the spatial autocorrelation coefficient r of Glechoma lonituba in Zhulinxia patch
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Fig.4 Correlograms showing the spatial autocorrelation coefficient r of Glechoma lonituba in Pinggecun patch
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