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Introduction

The growth of plants depends on taking up carbon from 
the air and nitrogen from the soil in a ratio of approximately 
30C: 1N (plus other essential elements at much lower rates). 
Thus the assimilatory mechanisms of plants are dominated 
by photosynthesis and nitrate uptake. If photosynthesis is 
perturbed (by changes in light intensity or CO2 concentration, 
for instance) then nitrate uptake must change to maintain the N 
supply at the necessary rate, and if nitrate uptake is perturbed 
it must recover its former rate in order to continue matching 
the rate of photosynthesis (or photosynthesis must respond). 
Such adjustments have been observed [1,2].

C/N interactions are a matter of control, as distinct from 
mechanisms of processes per se, about which much is already 
known. Understanding control depends on knowing not only 
pathways of signaling, but also the time courses of adjustments 
of cellular processes involved in the pathway, and the latter is 
our main concern here.

We are interested in the way changes in light intensity on 
the shoot directly affect nitrate uptake by the root, rather than 
in inbuilt daily rhythms which can also affect N uptake [3].

Previous work has shown that light received by shoots can 
stimulate nitrate uptake by roots, (measured as net nitrate influx 
or as net 15N influx) in all species examined, but the magnitude 
of the response varies with species, environmental conditions 
and light intensity. For instance, nitrate uptake increases 20% to 
40% within a few hours and then becomes steady when plants 

are transferred from dark to light in barley [4] and decreases 
by a similar amount on transfer from light to dark in tobacco 
and soybean [5,6]. In prolonged darkness, the nitrate uptake 
rate may subsequently decline even further [7,8]. In tomato the 
initial adjustment of nitrate uptake takes longer, increasing in 
the light and decreasing in darkness continuously over a period 
of 6 h or more [9].

No detailed time courses of these responses have been 
reported although they are important characteristics of C/N 
interactions, one of which is the response of plant nutrient 
uptake to the demands from growth.

In examining time courses of responses to experimental 
perturbations, the time scale is critical. One needs to measure 
changes in nitrate uptake rates with sufficiently high time 
resolution to identify and characterize lags and initial changes 
in uptake rates. Some steps in signaling pathways, for instance 
gene expression and protein phosphorylation, may be initiated 
virtually instantaneously after an experimental perturbation and 
may be completed in a matter of minutes, though the length of 
time varies from one process to another (e.g., [10,11]). Measure-
ments of nitrate uptake with a time resolution of minutes are 
therefore needed. However, in most published work on nitrate 
responses to light, time courses have generally been measured 
with relatively few points, none less than 1 h apart, and often 
after 4 or 6 h. Peuke and Jeschke have provided systematic time 
courses with more frequent measurement, but a lag of the order 
of minutes would not be visible in their system because of the 
variability of the measured uptake rates [8].

In order to obtain the time courses with a high enough 
resolution to answer the questions posed above, we have used 
a new technique, which enables very detailed measurement 
of changes in net nitrate uptake by the root system of intact, 
growing wheat plants. We present the first systematic set of 
detailed time courses of the response of net nitrate uptake 
to the fundamental experimental perturbations – varying 
illumination of the shoot.

In the periods of growth and pretreatment, one twentieth 
Long Ashton solution containing 0.3 mM nitrate will have fully 
induced the nitrate transporters (e.g., [12]). Moreover, given that 
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the Km of both induced and constitutive high affinity nitrate 
transport systems is 20–50 μM (e.g., [13]), the concentration 
used in these experiments will saturate them. On the other 
hand, the low affinity transport systems, with Km above 1 mM, 
will transport little at 0.3 mM nitrate. For example, with a Km 
of 3.7 mM as in barley [8] the low affinity transport system 
would be operating at only 4% of its maximum capacity and 
add only a few percent to the total measured nitrate uptake in 
these experiments. The results of the paper therefore concern 
the characteristics of the fully induced, high affinity nitrate 
transport systems.

Material and methods

Plant culture
Wheat (Triticum aestivum L. cv. ‘EM18’) plants were grown 

in one fourth Long Ashton nutrient solution [14] at 20°C 
(±2°C) with a 16 h photoperiod (Tab. 1), light flux density 
of 400 mol m−2 s−1 (TPS-1 portable photosynthesis meter, PP 
Systems International Ltd., England). The bottom and sides 
of the container were enclosed in black paper, to minimize 
algal growth. The top of the container was covered with black 
sponge, into which small plastic tubes, open at both ends, could 
be inserted. Wheat seedlings (germinated for 3–5 days) were 
placed using tweezers with the seed in these small plastic tubes, 
to provide support and allow transfer from culture solution to 
experimental set-up with minimal handling. Air was pumped 
through the culture solution using an aquarium pump with 
the inflow tube plugged through sponge. The water level was 
replenished every morning and the solution replaced regularly.

To measure nitrate uptake, 20–30 days old plants were 
removed from the culture vessel and laid in a large tray with 
culture solution. Individual roots were gently teased apart with 
a toothpick. The plant was then transferred to a Perspex tray 20 
mm wide, 450 mm long, with raised sides 5 mm high, and held 
a slope of 5° from the horizontal. The roots were aligned along 
it and covered with transparent polythene film to eliminate 
“dead” volume, maximize flow over the whole root system and 

minimize evaporation of the nutrient solution. The trays were 
enclosed in black paper kept the roots in the dark during the 
experiments. The base of the shoot was held in the same small 
tube as during initial growth. This holder containing the plant 
was attached to the upper end of the tray, which was bent up at 
a slightly greater angle as illustrated in Fig. 1. The leaves were 
nearly upright. Enclosing in black paper also reduced light fall-
ing on the root system to near zero, and thus minimized algal 
growth on the roots. No algal growth was visible on cleaned 
roots once set up in the experimental trays.

Gentle physical disturbance of plants can inhibit nitrate 
uptake for more than 6 h [15]. To minimize the transplant 
shock, we set up the intact wheat plant in the experimental 
trays at least 14 h before starting experiments. Solutions were 
changed by shifting the inflow tube from one solution to an-
other. Plants were regularly used for several successive days. 
Roots and leaves visibly extended day by day. Growth rates in 
the experimental trays were estimated from the slope of the 
plot of ln (final plant wt) vs. time.

Non-invasive measurement of net nitrate influx
To avoid any ambiguity, net nitrate influx = influx across 

the plasma membrane − efflux across the plasma membrane, 
detected by loss of nitrate from the bathing solution.

A technique for measuring net nitrate uptake rates by 
root systems of intact plants growing at a normal rate was 
used (Cram and Minchin, unpublished data). This method 
has high time resolution as is necessary for the experiments 
reported here. Fig. 1 shows the set-up. Various dilutions of 
the nutrient solution were pumped in at the top of the root 
system and flowed over the roots from top to bottom of the tray, 
then pumped out to an automatic sample collector BS-100A 
(Shanghai Hu Xi Analysis Instrument Factory Co. Ltd., China). 
The outflow pump rate was three times greater than the inflow 
rate to ensure there was no overflow.

The nitrate concentration in the outflow solution (Cout/mM) 
collected after flowing over the root system was measured using 
an Ion/pH-Analyser ELIT 9801 (EA Instruments Ltd., UK), 
calibrated regularly against the inflow solution (Cin/mM) to 
allow for drift. The volume flow rate (V ml min−1) regulated by 
a peristaltic pump BT03-DG-8 (Tianjin City Xieda Weiye Ltd. 
Co., China) was checked by obtaining the difference between 
the weight of each test tube before and after collecting solution, 
then dividing by the time collecting each sample. The root 
system was cut off and weighed (WR, g fwt) at the end of a set 
of measurements, each of which lasted 3–5 days. Net nitrate 
uptake rate was calculated as:

Salt Concentration (mg/l)

KNO3 202
K2SO4 86
Ca(NO3)2 328
CaCl2 222
MgSO4·7H20 184
NaH2PO4·2H2O 208
MnSO4·4H2O 2.24
CuSO4·5H2O 0.25
ZnSO4·7H2O 0.29
H3BO3 3.1
Na2Mo4·2H2O 0.121
NaCl 5.86
Fe-Citrate(3H2O) 5.98

Tab. 1 The full Long-Ashton nutrient solution used in this study as 
taken from Hewitt [14].

Fig. 1 Set-up for non-invasive measurement of net nitrate influx.
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The speed of turnover of solution flowing over the roots was 
checked by injecting a pulse of Indian ink at the inflow end and 
following its clearance. Clearance of the solution round the 
root system was 80% completed in 1 min and virtually no ink 
was visible in the tray after 2 min. At any instant the volume of 
solution surrounding the root system was 1–2 ml, depending 
on the size of the roots.

To test for artificial changes in solution concentration, for 
instance by evaporation from the unenclosed collecting end 
of the trough, roots were replaced by inert plastic strips. No 
change was then observed in the concentration of solution when 
it flowed over the system. Changes observed in experiments 
must therefore have been due to uptake of nitrate by the root 
system itself. The plant will be transpiring at a normal rate dur-
ing the experiments. This would concentrate the solution as it 
flows over the root. For every 1 g dry wt, with a transpiration 
ratio of 200 g H2O [16] and a nitrogen content of 2 mmol, the 
ratio of water to nitrate uptake is 100 l/mol N. A root of 1.5 g 
fwt taking up nitrate at 7 mol g fwt−1 h−1 would then take up 
water at 1.5 × 7 × 100 1 ml h−1. With a flow rate of 180 ml h−1 
transpiration would concentrate the nutrient solution by about 
0.5%, which is insignificant. It should be noted, however, that 
with slower flow rates than used in these experiments or if the 
solution is recycled, then significant errors could arise due to 
transpirational uptake of water that would have to be measured 
and corrected for.

Light-dark, dark-light treatments
For each experiment, two plants were used, each set up in 

an individual tray as described above. In principle, one plant 
was used to measure the time course of the effect of a treatment 
on net nitrate influx while the other plant acted as a control, 
though the detail varied from experiment to experiment as 
described below.

In the laboratory, lamps were switched on at 6.00 h and off 
at 22.00 h. Measurements of net nitrate influx were started at 
8.00 h, and treatments were applied after 5 h or more when the 
net nitrate influx was steady (cf. Fig. 2).

To measure effects of transfer from light to dark, a black 
box was placed over the whole plant. In these experiments one 
plant was transferred to darkness at 13.00 h or 15.00 h, the other 
remaining in the light as control. Alternatively, plants were 
transferred to dark at 22.00 h, at the start of the normal night.

Replication and statistical analysis of data
Net nitrate influx rates were expressed relative to the net 

influx in the control plant or relative to a linear extrapolation 
of the rates before a change in light intensity.

All experiments were repeated at least four times. Values in 
tables and elsewhere are presented as mean ±SE of the mean 
(number of replicates). Significance of differences between 
means was tested using the t-test.

Results

The time course of the effect of illuminating the shoot on net nitrate influx
After the plant had been in the dark overnight it was trans-

ferred to the light at 6.00 h. Net nitrate influx started to increase 
immediately (Fig. 2a) and reached a new steady state, 15% to 
20% higher, after about 4 h (Tab. 2). After transfer from light 
to dark, net nitrate influx began to decrease after a lag of about 

2 h (Fig. 2b, Tab. 2) and took about 3 h to reach a new steady 
state (Tab. 2). The overall time to reach a new steady state after 
light to dark transfer (about 5 h) is significantly longer than 
that after dark to light transfer (about 4 h; P = 0.01). This, with 
the different time courses, shows that the two responses do not 
involve a simple reversal of a single process.

The relatively small increase in net nitrate influx after transfer 
to the light is not significantly different from the decrease after 
transfer back to the dark, as expected. This is comparable to but 
slightly lower than the changes of 20–50% reported in some 
other species [4–6,17].

To make sure this is a genuine light/dark effect rather than a 
diel rhythm, we have also compared the light-to-dark transition 
during the daytime with that at night. The time courses of net 
nitrate influx and particularly the maximum change in rate after 
transfer to the dark are shown in Tab. 2. There is no significant 
difference between the response in the middle of the day and 
that at 22.00 h, showing that there is no appreciable diel effect.

Discussion

What determines the speed of response of nitrate uptake by the root to 
illumination of the shoot?

Nitrate uptake by the root responds to light on the shoot in a 
relatively short time, during which a signal must be transported 
over several tens of cm. This long distance transport cannot be 
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by diffusion, which is too slow over long distances, and upwards 
xylem transport is irrelevant. A pressure-propagated signal is 
most probably an alarm signal [18] and could not carry much 
information and so cannot be involved. By a process of elimi-
nation we conclude that the signal must move in the phloem.

The mechanism is thought to be via a signal carried in 
phloem, most probably sugar. Sucrose is the primary product 
of photosynthesis and the main transported substance in the 
phloem, and consequently it is in the best position to serve 
as a transported signal (as well as a general substrate). This 
hypothesis has been verified in recently [19].

An increase in sucrose supply in the phloem (as would be 
expected to occur in the root after illuminating the shoot) would 
alter the sucrose flow into the cytoplasm of root cortical cells, 
with the same consequences as supplying sucrose in the solution 
around the root. Phloem transport might cause a lag before the 
root responds to a change in illumination of the shoot. However, 
no significant lag was found (Fig. 2), so it appears that phloem 
transport in wheat is relatively fast.

The final question is why there was a lag in response to 
darkening the shoot (2.3 h) before net nitrate influx began to 
decrease. The change of net nitrate influx began more or less 
immediately after illumination. Therefore, the observed lag 
after dark is unlikely to be due to any feature of the nitrate 
uptake, but most probably depends on a delayed change in the 
concentration of signal molecular.
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